Properties

Label 2.3e2_5e2.8t7.1
Dimension 2
Group $C_8:C_2$
Conductor $ 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$225= 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} + 2 x^{5} - 5 x^{4} + 13 x^{3} - 13 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 36\cdot 61 + 7\cdot 61^{2} + 26\cdot 61^{3} + 33\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 47\cdot 61 + 14\cdot 61^{2} + 3\cdot 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 3\cdot 61 + 60\cdot 61^{2} + 3\cdot 61^{3} + 43\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 17\cdot 61 + 12\cdot 61^{2} + 59\cdot 61^{3} + 42\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 + 33\cdot 61 + 37\cdot 61^{2} + 20\cdot 61^{3} + 26\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 + 61 + 60\cdot 61^{2} + 24\cdot 61^{3} + 23\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 + 28\cdot 61 + 52\cdot 61^{2} + 16\cdot 61^{3} + 38\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 13\cdot 61 + 60\cdot 61^{2} + 27\cdot 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,6,8,2,3,7)$
$(2,4)(6,7)$
$(1,5,8,3)(2,6,4,7)$
$(1,8)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,8)(3,5)$ $0$ $0$
$1$ $4$ $(1,5,8,3)(2,7,4,6)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$1$ $4$ $(1,3,8,5)(2,6,4,7)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$2$ $4$ $(1,5,8,3)(2,6,4,7)$ $0$ $0$
$2$ $8$ $(1,4,5,6,8,2,3,7)$ $0$ $0$
$2$ $8$ $(1,6,3,4,8,7,5,2)$ $0$ $0$
$2$ $8$ $(1,2,3,6,8,4,5,7)$ $0$ $0$
$2$ $8$ $(1,6,5,2,8,7,3,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.