Properties

Label 2.3e2_5_89.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 5 \cdot 89 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4005= 3^{2} \cdot 5 \cdot 89 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 6 x^{6} - 56 x^{5} + 284 x^{4} - 322 x^{3} + 2431 x^{2} - 7410 x + 9580 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.5_89.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 79\cdot 109 + 91\cdot 109^{2} + 44\cdot 109^{3} + 4\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 + 99\cdot 109 + 34\cdot 109^{2} + 71\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 47\cdot 109 + 22\cdot 109^{2} + 46\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 71 + 75\cdot 109 + 69\cdot 109^{2} + 88\cdot 109^{3} + 73\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 75 + 15\cdot 109 + 34\cdot 109^{2} + 38\cdot 109^{3} + 49\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 92 + 23\cdot 109 + 57\cdot 109^{2} + 63\cdot 109^{3} + 18\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 96 + 72\cdot 109 + 21\cdot 109^{2} + 13\cdot 109^{3} + 103\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 107 + 21\cdot 109 + 104\cdot 109^{2} + 69\cdot 109^{3} + 59\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,7,4)(3,5,6,8)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,4)(3,6)(5,8)$$-2$
$2$$2$$(1,3)(2,8)(4,5)(6,7)$$0$
$2$$2$$(1,8)(2,6)(3,4)(5,7)$$0$
$2$$4$$(1,2,7,4)(3,5,6,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.