Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 33\cdot 41 + 11\cdot 41^{2} + 32\cdot 41^{3} + 5\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 + 5\cdot 41 + 34\cdot 41^{2} + 25\cdot 41^{3} + 27\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 + 35\cdot 41 + 4\cdot 41^{2} + 6\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 12 + 5\cdot 41 + 33\cdot 41^{2} + 37\cdot 41^{3} + 3\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 16 + 36\cdot 41 + 9\cdot 41^{2} + 12\cdot 41^{3} + 21\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 19 + 8\cdot 41 + 32\cdot 41^{2} + 5\cdot 41^{3} + 2\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 21 + 38\cdot 41 + 2\cdot 41^{2} + 27\cdot 41^{3} + 3\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 40 + 41 + 35\cdot 41^{2} + 16\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,8,3)(4,7,5,6)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ | $-2$ |
| $2$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ | $0$ |
| $2$ | $2$ | $(1,6)(2,5)(3,4)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,2,8,3)(4,7,5,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.