Properties

Label 2.3e2_5_7e2.4t3.6
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 5 \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2205= 3^{2} \cdot 5 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} + 4 x^{5} + 34 x^{4} - 10 x^{3} + 275 x^{2} - 100 x + 400 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 33\cdot 41 + 11\cdot 41^{2} + 32\cdot 41^{3} + 5\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 5\cdot 41 + 34\cdot 41^{2} + 25\cdot 41^{3} + 27\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 + 35\cdot 41 + 4\cdot 41^{2} + 6\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 + 5\cdot 41 + 33\cdot 41^{2} + 37\cdot 41^{3} + 3\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 16 + 36\cdot 41 + 9\cdot 41^{2} + 12\cdot 41^{3} + 21\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 8\cdot 41 + 32\cdot 41^{2} + 5\cdot 41^{3} + 2\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 21 + 38\cdot 41 + 2\cdot 41^{2} + 27\cdot 41^{3} + 3\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 40 + 41 + 35\cdot 41^{2} + 16\cdot 41^{3} + 29\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,3)(4,7,5,6)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,3)(4,5)(6,7)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $0$
$2$ $4$ $(1,2,8,3)(4,7,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.