Properties

Label 2.3e2_5_7e2.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 5 \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2205= 3^{2} \cdot 5 \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 18 x^{2} - 4 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 14\cdot 89 + 60\cdot 89^{2} + 62\cdot 89^{3} + 67\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 59 + 30\cdot 89 + 54\cdot 89^{2} + 67\cdot 89^{3} + 65\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 77 + 52\cdot 89 + 71\cdot 89^{2} + 11\cdot 89^{3} + 55\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 79\cdot 89 + 80\cdot 89^{2} + 35\cdot 89^{3} + 78\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.