Properties

Label 2.3e2_5_7.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{2} \cdot 5 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$315= 3^{2} \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{9} + 3 x^{7} + 9 x^{5} - 9 x^{4} + 8 x^{3} - 18 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3e2_5_7.6t1.5c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 8 a^{2} + 10 a + 7 + \left(7 a^{2} + 5 a + 6\right)\cdot 11 + \left(10 a^{2} + a + 10\right)\cdot 11^{2} + \left(9 a^{2} + 6 a + 5\right)\cdot 11^{3} + \left(5 a^{2} + a\right)\cdot 11^{4} + \left(4 a^{2} + 6\right)\cdot 11^{5} + \left(5 a^{2} + 8 a + 3\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 4 a + 1 + \left(a^{2} + 8 a + 6\right)\cdot 11 + \left(6 a^{2} + 5 a + 4\right)\cdot 11^{2} + \left(a^{2} + 2 a + 9\right)\cdot 11^{3} + \left(6 a^{2} + 2 a\right)\cdot 11^{4} + \left(10 a^{2} + 3\right)\cdot 11^{5} + \left(7 a + 1\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 9 a + 10 + \left(5 a^{2} + 4 a + 6\right)\cdot 11 + \left(9 a^{2} + 4 a + 1\right)\cdot 11^{3} + \left(6 a^{2} + 2 a + 9\right)\cdot 11^{4} + \left(8 a^{2} + 4 a + 7\right)\cdot 11^{5} + \left(5 a^{2} + 7\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 5 a^{2} + 8 a + 3 + \left(a^{2} + 7 a + 9\right)\cdot 11 + \left(5 a^{2} + 3 a + 6\right)\cdot 11^{2} + \left(10 a^{2} + 2 a + 6\right)\cdot 11^{3} + \left(9 a^{2} + 7 a + 9\right)\cdot 11^{4} + \left(6 a^{2} + 10 a + 1\right)\cdot 11^{5} + \left(4 a^{2} + 6 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 a + \left(4 a^{2} + 8 a + 9\right)\cdot 11 + \left(4 a^{2} + 4 a + 5\right)\cdot 11^{2} + 4 a\cdot 11^{3} + \left(9 a^{2} + 6 a + 1\right)\cdot 11^{4} + \left(2 a^{2} + 6 a\right)\cdot 11^{5} + \left(4 a^{2} + 3 a + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 4 a + 10 + \left(a^{2} + 7 a + 8\right)\cdot 11 + \left(6 a + 3\right)\cdot 11^{2} + \left(3 a^{2} + 8 a\right)\cdot 11^{3} + \left(10 a^{2} + a + 10\right)\cdot 11^{4} + \left(9 a^{2} + 5 a + 5\right)\cdot 11^{5} + \left(4 a + 8\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 9 a + 1 + \left(5 a^{2} + 5 a + 4\right)\cdot 11 + \left(6 a^{2} + 10 a + 1\right)\cdot 11^{2} + \left(7 a^{2} + 8 a + 10\right)\cdot 11^{3} + \left(2 a^{2} + 2 a + 10\right)\cdot 11^{4} + \left(9 a^{2} + 10 a + 4\right)\cdot 11^{5} + \left(5 a^{2} + 2 a\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 5 a^{2} + 3 a + 3 + \left(8 a^{2} + 10 a\right)\cdot 11 + \left(4 a^{2} + 9 a + 10\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 5\right)\cdot 11^{3} + \left(2 a^{2} + 6 a + 10\right)\cdot 11^{4} + \left(8 a^{2} + 10\right)\cdot 11^{5} + \left(10 a^{2} + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 4 a^{2} + 10 a + 9 + \left(8 a^{2} + 6 a + 3\right)\cdot 11 + 5 a^{2}11^{2} + \left(8 a^{2} + 4\right)\cdot 11^{3} + \left(a^{2} + 2 a + 2\right)\cdot 11^{4} + \left(5 a^{2} + 6 a + 3\right)\cdot 11^{5} + \left(5 a^{2} + 10 a + 7\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8,9,6,5,2)(3,4,7)$
$(2,7)(3,6)(4,8)$
$(1,3)(4,5)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,6)(2,9)(5,8)$$0$
$1$$3$$(1,9,5)(2,8,6)(3,7,4)$$2 \zeta_{3}$
$1$$3$$(1,5,9)(2,6,8)(3,4,7)$$-2 \zeta_{3} - 2$
$2$$3$$(1,4,2)(3,8,9)(5,7,6)$$\zeta_{3} + 1$
$2$$3$$(1,2,4)(3,9,8)(5,6,7)$$-\zeta_{3}$
$2$$3$$(1,6,3)(2,7,9)(4,5,8)$$-1$
$3$$6$$(1,8,9,6,5,2)(3,4,7)$$0$
$3$$6$$(1,2,5,6,9,8)(3,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.