Properties

Label 2.3e2_5_7.6t5.1c2
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{2} \cdot 5 \cdot 7 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$315= 3^{2} \cdot 5 \cdot 7 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 3 x^{4} + 2 x^{3} - 8 x^{2} + 3 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3e2_5_7.6t1.5c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 12 + 16\cdot 19 + \left(17 a + 14\right)\cdot 19^{2} + \left(16 a + 1\right)\cdot 19^{3} + \left(17 a + 2\right)\cdot 19^{4} + \left(9 a + 15\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 13 + \left(6 a + 5\right)\cdot 19 + \left(9 a + 7\right)\cdot 19^{2} + 13 a\cdot 19^{3} + \left(18 a + 16\right)\cdot 19^{4} + \left(15 a + 10\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 4 + \left(12 a + 15\right)\cdot 19 + \left(9 a + 7\right)\cdot 19^{2} + \left(13 a + 3\right)\cdot 19^{3} + 8 a\cdot 19^{4} + \left(a + 2\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 2 + \left(6 a + 11\right)\cdot 19 + \left(9 a + 4\right)\cdot 19^{2} + \left(5 a + 7\right)\cdot 19^{3} + \left(10 a + 14\right)\cdot 19^{4} + \left(17 a + 13\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 7 + \left(18 a + 3\right)\cdot 19 + \left(a + 12\right)\cdot 19^{2} + \left(2 a + 1\right)\cdot 19^{3} + \left(a + 3\right)\cdot 19^{4} + \left(9 a + 7\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 1 + \left(12 a + 5\right)\cdot 19 + \left(9 a + 10\right)\cdot 19^{2} + \left(5 a + 4\right)\cdot 19^{3} + 2\cdot 19^{4} + \left(3 a + 8\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4)$
$(1,5,6,2,4,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$1$$3$$(1,6,4)(2,3,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,4,6)(2,5,3)$$2 \zeta_{3}$
$2$$3$$(2,3,5)$$-\zeta_{3}$
$2$$3$$(2,5,3)$$\zeta_{3} + 1$
$2$$3$$(1,6,4)(2,5,3)$$-1$
$3$$6$$(1,5,6,2,4,3)$$0$
$3$$6$$(1,3,4,2,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.