Properties

Label 2.3e2_5_41.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 5 \cdot 41 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1845= 3^{2} \cdot 5 \cdot 41 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 23 x^{6} + 92 x^{5} + 68 x^{4} - 644 x^{3} + 663 x^{2} + 259 x - 449 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 59\cdot 139 + 57\cdot 139^{2} + 110\cdot 139^{3} + 72\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 123\cdot 139 + 82\cdot 139^{2} + 134\cdot 139^{3} + 85\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 22\cdot 139 + 10\cdot 139^{2} + 64\cdot 139^{3} + 92\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 66 + 128\cdot 139 + 63\cdot 139^{2} + 77\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 70 + 40\cdot 139 + 27\cdot 139^{2} + 60\cdot 139^{3} + 124\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 82\cdot 139 + 36\cdot 139^{2} + 34\cdot 139^{3} + 32\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 118 + 124\cdot 139 + 14\cdot 139^{2} + 66\cdot 139^{3} + 110\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 138 + 113\cdot 139 + 123\cdot 139^{2} + 85\cdot 139^{3} + 99\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,8)(4,7,6,5)$
$(1,4)(2,5)(3,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $-2$
$2$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,2,3,8)(4,7,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.