Properties

Label 2.3e2_5_31.8t11.1
Dimension 2
Group $Q_8:C_2$
Conductor $ 3^{2} \cdot 5 \cdot 31 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$1395= 3^{2} \cdot 5 \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 8 x^{6} - 7 x^{5} + 25 x^{4} + 7 x^{3} + 32 x^{2} + 55 x + 19 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 59\cdot 379 + 135\cdot 379^{2} + 344\cdot 379^{3} + 86\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 145\cdot 379 + 286\cdot 379^{2} + 309\cdot 379^{3} + 64\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 102 + 254\cdot 379 + 77\cdot 379^{2} + 46\cdot 379^{3} + 9\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 237 + 12\cdot 379 + 302\cdot 379^{2} + 247\cdot 379^{3} + 79\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 254 + 367\cdot 379 + 217\cdot 379^{2} + 54\cdot 379^{3} + 108\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 265 + 177\cdot 379 + 173\cdot 379^{2} + 250\cdot 379^{3} + 321\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 291 + 346\cdot 379 + 244\cdot 379^{2} + 166\cdot 379^{3} + 343\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 325 + 152\cdot 379 + 78\cdot 379^{2} + 96\cdot 379^{3} + 123\cdot 379^{4} +O\left(379^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,4)(3,8)(5,7)$
$(1,2,3,5)(4,8,7,6)$
$(1,3)(2,5)(4,7)(6,8)$
$(2,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$ $-2$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$2$ $2$ $(2,5)(6,8)$ $0$ $0$
$2$ $2$ $(1,2)(3,5)(4,8)(6,7)$ $0$ $0$
$1$ $4$ $(1,4,3,7)(2,8,5,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,7,3,4)(2,6,5,8)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$ $0$
$2$ $4$ $(1,8,3,6)(2,4,5,7)$ $0$ $0$
$2$ $4$ $(1,4,3,7)(2,6,5,8)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.