Properties

Label 2.3e2_5_191.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 5 \cdot 191 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8595= 3^{2} \cdot 5 \cdot 191 $
Artin number field: Splitting field of $f= x^{8} - 32 x^{6} + 1176 x^{4} - 6125 x^{2} + 211600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 93\cdot 149 + 147\cdot 149^{2} + 14\cdot 149^{3} + 126\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 112\cdot 149 + 28\cdot 149^{2} + 56\cdot 149^{3} + 21\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 + 5\cdot 149 + 59\cdot 149^{2} + 102\cdot 149^{3} + 126\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 87\cdot 149 + 62\cdot 149^{2} + 124\cdot 149^{3} + 23\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 85 + 61\cdot 149 + 86\cdot 149^{2} + 24\cdot 149^{3} + 125\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 102 + 143\cdot 149 + 89\cdot 149^{2} + 46\cdot 149^{3} + 22\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 128 + 36\cdot 149 + 120\cdot 149^{2} + 92\cdot 149^{3} + 127\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 132 + 55\cdot 149 + 149^{2} + 134\cdot 149^{3} + 22\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.