Properties

Label 2.3e2_5_191.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 5 \cdot 191 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$8595= 3^{2} \cdot 5 \cdot 191 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 12 x^{2} + 13 x + 472 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13\cdot 59 + 6\cdot 59^{2} + 8\cdot 59^{3} + 2\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 1 + 46\cdot 59 + 52\cdot 59^{2} + 50\cdot 59^{3} + 56\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 25\cdot 59 + 40\cdot 59^{2} + 11\cdot 59^{3} + 27\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 + 33\cdot 59 + 18\cdot 59^{2} + 47\cdot 59^{3} + 31\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.