Properties

Label 2.3e2_5_19.8t11.3c2
Dimension 2
Group $Q_8:C_2$
Conductor $ 3^{2} \cdot 5 \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$855= 3^{2} \cdot 5 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} + 5 x^{5} + x^{4} + 7 x^{3} + 2 x^{2} - 41 x + 31 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd
Determinant: 1.5_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 48\cdot 61 + 55\cdot 61^{2} + 48\cdot 61^{3} + 18\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 40\cdot 61 + 55\cdot 61^{2} + 46\cdot 61^{3} + 40\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 16\cdot 61 + 9\cdot 61^{2} + 53\cdot 61^{3} + 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 39\cdot 61 + 19\cdot 61^{2} + 21\cdot 61^{3} + 19\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 24\cdot 61 + 61^{2} + 56\cdot 61^{3} + 4\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 21\cdot 61 + 11\cdot 61^{2} + 32\cdot 61^{3} + 16\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 57 + 43\cdot 61 + 26\cdot 61^{2} + 13\cdot 61^{3} + 58\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 60 + 9\cdot 61 + 3\cdot 61^{2} + 33\cdot 61^{3} + 22\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,6)(3,5)(7,8)$
$(4,6)(5,7)$
$(1,2)(3,8)(4,6)(5,7)$
$(1,7,2,5)(3,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,8)(4,6)(5,7)$$-2$
$2$$2$$(1,4)(2,6)(3,5)(7,8)$$0$
$2$$2$$(4,6)(5,7)$$0$
$2$$2$$(1,7)(2,5)(3,4)(6,8)$$0$
$1$$4$$(1,8,2,3)(4,7,6,5)$$2 \zeta_{4}$
$1$$4$$(1,3,2,8)(4,5,6,7)$$-2 \zeta_{4}$
$2$$4$$(1,7,2,5)(3,4,8,6)$$0$
$2$$4$$(1,6,2,4)(3,7,8,5)$$0$
$2$$4$$(1,8,2,3)(4,5,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.