Properties

Label 2.855.8t11.b
Dimension $2$
Group $Q_8:C_2$
Conductor $855$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(855\)\(\medspace = 3^{2} \cdot 5 \cdot 19 \)
Artin number field: Galois closure of 8.0.164480625.1
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-15}, \sqrt{-19})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 2 + 48\cdot 61 + 55\cdot 61^{2} + 48\cdot 61^{3} + 18\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 + 40\cdot 61 + 55\cdot 61^{2} + 46\cdot 61^{3} + 40\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 11 + 16\cdot 61 + 9\cdot 61^{2} + 53\cdot 61^{3} + 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 + 39\cdot 61 + 19\cdot 61^{2} + 21\cdot 61^{3} + 19\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 42 + 24\cdot 61 + 61^{2} + 56\cdot 61^{3} + 4\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 45 + 21\cdot 61 + 11\cdot 61^{2} + 32\cdot 61^{3} + 16\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 57 + 43\cdot 61 + 26\cdot 61^{2} + 13\cdot 61^{3} + 58\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 60 + 9\cdot 61 + 3\cdot 61^{2} + 33\cdot 61^{3} + 22\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,6)(3,5)(7,8)$
$(4,6)(5,7)$
$(1,2)(3,8)(4,6)(5,7)$
$(1,7,2,5)(3,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $-2$ $-2$
$2$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $0$ $0$
$2$ $2$ $(4,6)(5,7)$ $0$ $0$
$2$ $2$ $(1,7)(2,5)(3,4)(6,8)$ $0$ $0$
$1$ $4$ $(1,8,2,3)(4,7,6,5)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,3,2,8)(4,5,6,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,2,5)(3,4,8,6)$ $0$ $0$
$2$ $4$ $(1,6,2,4)(3,7,8,5)$ $0$ $0$
$2$ $4$ $(1,8,2,3)(4,5,6,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.