Properties

Label 2.3e2_5_11.8t6.4
Dimension 2
Group $D_{8}$
Conductor $ 3^{2} \cdot 5 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$495= 3^{2} \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 6 x^{6} + x^{5} + 4 x^{4} + 3 x^{3} + 6 x^{2} + 3 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 179 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 179 + 153\cdot 179^{2} + 106\cdot 179^{3} + 52\cdot 179^{4} + 127\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 23 + 85\cdot 179 + 70\cdot 179^{2} + 33\cdot 179^{3} + 107\cdot 179^{4} + 129\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 31 + 139\cdot 179 + 53\cdot 179^{2} + 19\cdot 179^{3} + 171\cdot 179^{4} + 140\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 + 72\cdot 179 + 102\cdot 179^{2} + 104\cdot 179^{3} + 101\cdot 179^{4} + 83\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 87 + 61\cdot 179 + 131\cdot 179^{2} + 21\cdot 179^{3} + 157\cdot 179^{4} + 3\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 108 + 137\cdot 179 + 48\cdot 179^{2} + 127\cdot 179^{3} + 32\cdot 179^{4} + 6\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 113 + 101\cdot 179 + 28\cdot 179^{2} + 38\cdot 179^{3} + 14\cdot 179^{4} + 128\cdot 179^{5} +O\left(179^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 136 + 109\cdot 179 + 127\cdot 179^{2} + 85\cdot 179^{3} + 79\cdot 179^{4} + 96\cdot 179^{5} +O\left(179^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(3,8)(4,7)$
$(1,2,6,5)(3,8,4,7)$
$(1,4,5,8,6,3,2,7)$
$(1,6)(2,5)(3,4)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $-2$ $-2$
$4$ $2$ $(2,5)(3,8)(4,7)$ $0$ $0$
$4$ $2$ $(1,4)(2,8)(3,6)(5,7)$ $0$ $0$
$2$ $4$ $(1,5,6,2)(3,7,4,8)$ $0$ $0$
$2$ $8$ $(1,4,5,8,6,3,2,7)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,8,2,4,6,7,5,3)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.