Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 9\cdot 89 + 13\cdot 89^{2} + 37\cdot 89^{3} + 32\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 13 + 8\cdot 89 + 2\cdot 89^{2} + 23\cdot 89^{3} + 72\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 + 70\cdot 89 + 20\cdot 89^{2} + 36\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 53 + 3\cdot 89 + 9\cdot 89^{2} + 56\cdot 89^{3} + 34\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 56 + 56\cdot 89 + 65\cdot 89^{2} + 25\cdot 89^{3} + 79\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 61 + 52\cdot 89 + 81\cdot 89^{2} + 15\cdot 89^{3} + 29\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 69 + 72\cdot 89 + 56\cdot 89^{2} + 83\cdot 89^{3} + 61\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 79 + 82\cdot 89 + 17\cdot 89^{2} + 78\cdot 89^{3} + 66\cdot 89^{4} +O\left(89^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,5,8,6,4,2,7)$ |
| $(1,5,6,2)(3,8,4,7)$ |
| $(1,5)(2,6)(7,8)$ |
| $(1,6)(2,5)(3,4)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,4)(7,8)$ |
$-2$ |
$-2$ |
| $4$ |
$2$ |
$(1,5)(2,6)(7,8)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,8)(2,4)(3,5)(6,7)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,5,6,2)(3,8,4,7)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,3,5,8,6,4,2,7)$ |
$-\zeta_{8}^{3} + \zeta_{8}$ |
$\zeta_{8}^{3} - \zeta_{8}$ |
| $2$ |
$8$ |
$(1,8,2,3,6,7,5,4)$ |
$\zeta_{8}^{3} - \zeta_{8}$ |
$-\zeta_{8}^{3} + \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.