Properties

Label 2.3e2_5_11.8t6.3
Dimension 2
Group $D_{8}$
Conductor $ 3^{2} \cdot 5 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$495= 3^{2} \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 3 x^{6} - 7 x^{5} + 10 x^{4} - 6 x^{3} + 15 x^{2} - 9 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 9\cdot 89 + 13\cdot 89^{2} + 37\cdot 89^{3} + 32\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 8\cdot 89 + 2\cdot 89^{2} + 23\cdot 89^{3} + 72\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 70\cdot 89 + 20\cdot 89^{2} + 36\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 3\cdot 89 + 9\cdot 89^{2} + 56\cdot 89^{3} + 34\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 56\cdot 89 + 65\cdot 89^{2} + 25\cdot 89^{3} + 79\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 52\cdot 89 + 81\cdot 89^{2} + 15\cdot 89^{3} + 29\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 72\cdot 89 + 56\cdot 89^{2} + 83\cdot 89^{3} + 61\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 79 + 82\cdot 89 + 17\cdot 89^{2} + 78\cdot 89^{3} + 66\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,8,6,4,2,7)$
$(1,5,6,2)(3,8,4,7)$
$(1,5)(2,6)(7,8)$
$(1,6)(2,5)(3,4)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $-2$ $-2$
$4$ $2$ $(1,5)(2,6)(7,8)$ $0$ $0$
$4$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $0$ $0$
$2$ $4$ $(1,5,6,2)(3,8,4,7)$ $0$ $0$
$2$ $8$ $(1,3,5,8,6,4,2,7)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,8,2,3,6,7,5,4)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.