Properties

Label 2.3e2_5_11.8t6.2c1
Dimension 2
Group $D_{8}$
Conductor $ 3^{2} \cdot 5 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$495= 3^{2} \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{6} + 8 x^{5} - 2 x^{4} - 11 x^{3} + 11 x^{2} + 13 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.5_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 58\cdot 89 + 57\cdot 89^{2} + 73\cdot 89^{3} + 76\cdot 89^{4} + 68\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 + 51\cdot 89 + 63\cdot 89^{2} + 55\cdot 89^{3} + 53\cdot 89^{4} + 63\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 32 + 56\cdot 89 + 75\cdot 89^{2} + 44\cdot 89^{3} + 38\cdot 89^{4} + 47\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 41 + 88\cdot 89 + 85\cdot 89^{2} + 77\cdot 89^{3} + 55\cdot 89^{4} + 64\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 43 + 56\cdot 89 + 67\cdot 89^{2} + 80\cdot 89^{3} + 15\cdot 89^{4} + 26\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 67 + 88\cdot 89 + 32\cdot 89^{2} + 69\cdot 89^{3} + 66\cdot 89^{4} + 11\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 68 + 48\cdot 89 + 57\cdot 89^{2} + 60\cdot 89^{3} + 25\cdot 89^{4} + 53\cdot 89^{5} +O\left(89^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 73 + 85\cdot 89 + 3\cdot 89^{2} + 71\cdot 89^{3} + 22\cdot 89^{4} + 20\cdot 89^{5} +O\left(89^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,7,8)(2,3,6,5)$
$(1,8)(3,5)(4,7)$
$(1,2,8,5,7,6,4,3)$
$(1,7)(2,6)(3,5)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,6)(3,5)(4,8)$$-2$
$4$$2$$(1,8)(3,5)(4,7)$$0$
$4$$2$$(1,5)(2,8)(3,7)(4,6)$$0$
$2$$4$$(1,8,7,4)(2,5,6,3)$$0$
$2$$8$$(1,2,8,5,7,6,4,3)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,4,2,7,3,8,6)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.