Properties

Label 2.3e2_5_11.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 5 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$495= 3^{2} \cdot 5 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 4 x^{6} - 14 x^{5} + 29 x^{4} - 28 x^{3} + 36 x^{2} - 55 x + 55 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 62\cdot 89 + 10\cdot 89^{2} + 13\cdot 89^{3} + 16\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 49\cdot 89 + 3\cdot 89^{2} + 3\cdot 89^{3} + 33\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 8\cdot 89 + 79\cdot 89^{2} + 79\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 40 + 41\cdot 89 + 75\cdot 89^{2} + 32\cdot 89^{3} + 24\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 85\cdot 89 + 5\cdot 89^{2} + 20\cdot 89^{3} + 33\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 30\cdot 89 + 77\cdot 89^{2} + 15\cdot 89^{3} + 83\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 72 + 62\cdot 89 + 72\cdot 89^{2} + 52\cdot 89^{3} + 50\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 77 + 15\cdot 89 + 31\cdot 89^{2} + 49\cdot 89^{3} + 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,7)(6,8)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,4)(3,6)(5,8)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,3)(2,8)(4,5)(6,7)$ $0$
$2$ $4$ $(1,8,7,5)(2,3,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.