Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 a + 2 + 7\cdot 11 + \left(5 a + 4\right)\cdot 11^{2} + \left(9 a + 7\right)\cdot 11^{3} + \left(9 a + 7\right)\cdot 11^{4} + \left(2 a + 6\right)\cdot 11^{5} + 3 a\cdot 11^{6} + \left(2 a + 5\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 a + \left(4 a + 5\right)\cdot 11 + \left(5 a + 4\right)\cdot 11^{2} + 2\cdot 11^{3} + \left(4 a + 3\right)\cdot 11^{4} + \left(10 a + 3\right)\cdot 11^{5} + \left(10 a + 8\right)\cdot 11^{6} + \left(4 a + 2\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 6 a + 9 + \left(6 a + 6\right)\cdot 11 + \left(5 a + 10\right)\cdot 11^{2} + \left(10 a + 9\right)\cdot 11^{3} + \left(6 a + 7\right)\cdot 11^{4} + 7\cdot 11^{5} + 8\cdot 11^{6} + 6 a\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 10 + 2\cdot 11 + 7\cdot 11^{2} + 6\cdot 11^{3} + 11^{4} + 8\cdot 11^{5} + 8\cdot 11^{6} + 3\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 8 a + 8 + \left(6 a + 2\right)\cdot 11 + \left(2 a + 2\right)\cdot 11^{2} + \left(9 a + 9\right)\cdot 11^{3} + \left(5 a + 1\right)\cdot 11^{4} + \left(6 a + 2\right)\cdot 11^{5} + \left(10 a + 4\right)\cdot 11^{6} + 3\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a + 5 + \left(10 a + 1\right)\cdot 11 + \left(5 a + 2\right)\cdot 11^{2} + \left(a + 7\right)\cdot 11^{3} + \left(a + 4\right)\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + \left(7 a + 10\right)\cdot 11^{6} + \left(8 a + 10\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 3 a + 7 + \left(4 a + 10\right)\cdot 11 + \left(8 a + 5\right)\cdot 11^{2} + \left(a + 10\right)\cdot 11^{3} + \left(5 a + 4\right)\cdot 11^{4} + 4 a\cdot 11^{5} + 7\cdot 11^{6} + \left(10 a + 7\right)\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 6 + 7\cdot 11 + 6\cdot 11^{2} + 11^{3} + 11^{4} + 7\cdot 11^{5} + 6\cdot 11^{6} + 9\cdot 11^{7} +O\left(11^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,6,3)(2,4,5,8)$ |
| $(1,6)(2,5)(3,7)(4,8)$ |
| $(1,4)(3,7)(6,8)$ |
| $(1,8,7)(3,6,4)$ |
| $(1,2,6,5)(3,4,7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,7)(4,8)$ |
$-2$ |
$-2$ |
| $12$ |
$2$ |
$(1,4)(3,7)(6,8)$ |
$0$ |
$0$ |
| $8$ |
$3$ |
$(1,8,7)(3,6,4)$ |
$-1$ |
$-1$ |
| $6$ |
$4$ |
$(1,2,6,5)(3,4,7,8)$ |
$0$ |
$0$ |
| $8$ |
$6$ |
$(1,4,7,6,8,3)(2,5)$ |
$1$ |
$1$ |
| $6$ |
$8$ |
$(1,7,4,2,6,3,8,5)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ |
$8$ |
$(1,3,4,5,6,7,8,2)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.