Properties

Label 2.3e2_53e2.24t22.1c2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 3^{2} \cdot 53^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$25281= 3^{2} \cdot 53^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 7 x^{6} - 7 x^{5} - 2 x^{4} + 11 x^{3} - 14 x^{2} + 8 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 7 + \left(7 a + 8\right)\cdot 11 + \left(3 a + 1\right)\cdot 11^{2} + 3\cdot 11^{3} + \left(10 a + 2\right)\cdot 11^{4} + \left(7 a + 10\right)\cdot 11^{5} + \left(9 a + 2\right)\cdot 11^{6} + \left(4 a + 6\right)\cdot 11^{7} + \left(a + 3\right)\cdot 11^{8} + \left(3 a + 6\right)\cdot 11^{9} + \left(2 a + 8\right)\cdot 11^{10} + \left(6 a + 2\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 9 + 4\cdot 11 + 11^{2} + 6\cdot 11^{3} + 5\cdot 11^{4} + 10\cdot 11^{5} + 3\cdot 11^{6} + 8\cdot 11^{7} + 9\cdot 11^{8} + 11^{9} + 6\cdot 11^{10} + 5\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 3 }$ $=$ $ a + 3 + \left(3 a + 8\right)\cdot 11 + \left(7 a + 8\right)\cdot 11^{2} + 10 a\cdot 11^{3} + 9\cdot 11^{4} + \left(3 a + 9\right)\cdot 11^{5} + a\cdot 11^{6} + \left(6 a + 5\right)\cdot 11^{7} + \left(9 a + 4\right)\cdot 11^{8} + \left(7 a + 6\right)\cdot 11^{9} + \left(8 a + 3\right)\cdot 11^{10} + \left(4 a + 3\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 3 + 6\cdot 11 + 9\cdot 11^{2} + 4\cdot 11^{3} + 5\cdot 11^{4} + 7\cdot 11^{6} + 2\cdot 11^{7} + 11^{8} + 9\cdot 11^{9} + 4\cdot 11^{10} + 5\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 3 a + \left(2 a + 8\right)\cdot 11 + \left(5 a + 1\right)\cdot 11^{2} + \left(7 a + 4\right)\cdot 11^{3} + a\cdot 11^{4} + \left(2 a + 2\right)\cdot 11^{5} + \left(2 a + 2\right)\cdot 11^{6} + \left(2 a + 2\right)\cdot 11^{7} + \left(4 a + 9\right)\cdot 11^{8} + \left(7 a + 3\right)\cdot 11^{9} + \left(6 a + 1\right)\cdot 11^{10} + 2\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 6 }$ $=$ $ a + 5 + \left(3 a + 2\right)\cdot 11 + \left(7 a + 9\right)\cdot 11^{2} + \left(10 a + 7\right)\cdot 11^{3} + 8\cdot 11^{4} + 3 a\cdot 11^{5} + \left(a + 8\right)\cdot 11^{6} + \left(6 a + 4\right)\cdot 11^{7} + \left(9 a + 7\right)\cdot 11^{8} + \left(7 a + 4\right)\cdot 11^{9} + \left(8 a + 2\right)\cdot 11^{10} + \left(4 a + 8\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 8 a + 1 + \left(8 a + 3\right)\cdot 11 + \left(5 a + 9\right)\cdot 11^{2} + \left(3 a + 6\right)\cdot 11^{3} + \left(9 a + 10\right)\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + \left(8 a + 8\right)\cdot 11^{6} + \left(8 a + 8\right)\cdot 11^{7} + \left(6 a + 1\right)\cdot 11^{8} + \left(3 a + 7\right)\cdot 11^{9} + \left(4 a + 9\right)\cdot 11^{10} + \left(10 a + 8\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 10 a + 9 + \left(7 a + 2\right)\cdot 11 + \left(3 a + 2\right)\cdot 11^{2} + 10\cdot 11^{3} + \left(10 a + 1\right)\cdot 11^{4} + \left(7 a + 1\right)\cdot 11^{5} + \left(9 a + 10\right)\cdot 11^{6} + \left(4 a + 5\right)\cdot 11^{7} + \left(a + 6\right)\cdot 11^{8} + \left(3 a + 4\right)\cdot 11^{9} + \left(2 a + 7\right)\cdot 11^{10} + \left(6 a + 7\right)\cdot 11^{11} +O\left(11^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,4)(3,8)(5,7)$
$(1,5,6,7)(2,8,4,3)$
$(1,6)(2,8)(3,4)$
$(1,4,6,2)(3,5,8,7)$
$(1,2,3)(4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,8)(5,7)$$-2$
$12$$2$$(1,6)(2,8)(3,4)$$0$
$8$$3$$(1,5,4)(2,6,7)$$-1$
$6$$4$$(1,5,6,7)(2,8,4,3)$$0$
$8$$6$$(1,4,3,6,2,8)(5,7)$$1$
$6$$8$$(1,2,7,3,6,4,5,8)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,4,7,8,6,2,5,3)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.