Properties

Label 2.3e2_47.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{2} \cdot 47 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$423= 3^{2} \cdot 47 $
Artin number field: Splitting field of $f= x^{9} - 6 x^{7} - 9 x^{6} + 9 x^{5} + 9 x^{4} - x^{3} + 27 x - 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 8 a^{2} + 11 a + 13 + \left(12 a^{2} + 3 a + 3\right)\cdot 17 + \left(15 a^{2} + 5 a + 2\right)\cdot 17^{2} + \left(15 a^{2} + 4 a + 4\right)\cdot 17^{3} + \left(4 a^{2} + 8\right)\cdot 17^{4} + \left(7 a^{2} + 15 a + 9\right)\cdot 17^{5} + \left(5 a^{2} + 14 a + 14\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 11 a^{2} + 4 a + 15 + \left(11 a^{2} + 14 a + 8\right)\cdot 17 + \left(5 a^{2} + 7 a + 12\right)\cdot 17^{2} + \left(11 a^{2} + 16 a + 6\right)\cdot 17^{3} + \left(5 a + 5\right)\cdot 17^{4} + \left(11 a^{2} + 11 a + 6\right)\cdot 17^{5} + \left(5 a^{2} + 13 a + 3\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + 11 a + \left(12 a^{2} + 3 a + 13\right)\cdot 17 + \left(15 a^{2} + 5 a + 15\right)\cdot 17^{2} + \left(15 a^{2} + 4 a + 14\right)\cdot 17^{3} + \left(4 a^{2} + 6\right)\cdot 17^{4} + \left(7 a^{2} + 15 a + 13\right)\cdot 17^{5} + \left(5 a^{2} + 14 a + 11\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 15 a^{2} + 2 a + 2 + \left(9 a^{2} + 16 a + 12\right)\cdot 17 + \left(12 a^{2} + 3 a + 5\right)\cdot 17^{2} + \left(6 a^{2} + 13 a + 12\right)\cdot 17^{3} + \left(11 a^{2} + 10 a + 4\right)\cdot 17^{4} + \left(15 a^{2} + 7 a + 14\right)\cdot 17^{5} + \left(5 a^{2} + 5 a + 1\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 8 a^{2} + 11 a + 3 + \left(12 a^{2} + 3 a + 8\right)\cdot 17 + \left(15 a^{2} + 5 a + 13\right)\cdot 17^{2} + \left(15 a^{2} + 4 a + 12\right)\cdot 17^{3} + \left(4 a^{2} + 11\right)\cdot 17^{4} + \left(7 a^{2} + 15 a + 8\right)\cdot 17^{5} + \left(5 a^{2} + 14 a + 1\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 2 a + 12 + \left(9 a^{2} + 16 a + 7\right)\cdot 17 + \left(12 a^{2} + 3 a + 11\right)\cdot 17^{2} + \left(6 a^{2} + 13 a + 3\right)\cdot 17^{3} + \left(11 a^{2} + 10 a + 1\right)\cdot 17^{4} + \left(15 a^{2} + 7 a + 15\right)\cdot 17^{5} + \left(5 a^{2} + 5 a + 14\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{2} + 4 a + 2 + \left(11 a^{2} + 14 a + 1\right)\cdot 17 + \left(5 a^{2} + 7 a + 9\right)\cdot 17^{2} + \left(11 a^{2} + 16 a\right)\cdot 17^{3} + \left(5 a + 4\right)\cdot 17^{4} + \left(11 a^{2} + 11 a + 10\right)\cdot 17^{5} + \left(5 a^{2} + 13 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 2 a + 16 + \left(9 a^{2} + 16 a + 16\right)\cdot 17 + \left(12 a^{2} + 3 a + 7\right)\cdot 17^{2} + \left(6 a^{2} + 13 a + 14\right)\cdot 17^{3} + \left(11 a^{2} + 10 a + 16\right)\cdot 17^{4} + \left(15 a^{2} + 7 a + 1\right)\cdot 17^{5} + \left(5 a^{2} + 5 a + 12\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{2} + 4 a + 5 + \left(11 a^{2} + 14 a + 13\right)\cdot 17 + \left(5 a^{2} + 7 a + 6\right)\cdot 17^{2} + \left(11 a^{2} + 16 a + 15\right)\cdot 17^{3} + \left(5 a + 8\right)\cdot 17^{4} + \left(11 a^{2} + 11 a + 5\right)\cdot 17^{5} + \left(5 a^{2} + 13 a + 7\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,6)(3,8)(4,5)$
$(1,5,3)(2,9,7)(4,8,6)$
$(2,6)(4,9)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,6)(3,8)(4,5)$ $0$ $0$
$1$ $3$ $(1,5,3)(2,9,7)(4,8,6)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,5)(2,7,9)(4,6,8)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,2,6)(3,7,8)(4,5,9)$ $-1$ $-1$
$2$ $3$ $(1,9,8)(2,4,3)(5,7,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,8,9)(2,3,4)(5,6,7)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$3$ $6$ $(1,4,3,6,5,8)(2,9,7)$ $0$ $0$
$3$ $6$ $(1,8,5,6,3,4)(2,7,9)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.