Properties

Label 2.3e2_47.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3^{2} \cdot 47 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$423= 3^{2} \cdot 47 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 7 x^{4} - 15 x^{3} + 15 x^{2} - 15 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3e2_47.6t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + \left(11 a + 12\right)\cdot 19 + \left(a + 6\right)\cdot 19^{2} + \left(17 a + 1\right)\cdot 19^{3} + \left(7 a + 9\right)\cdot 19^{4} + \left(12 a + 11\right)\cdot 19^{5} + a\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 1 + \left(7 a + 3\right)\cdot 19 + \left(17 a + 16\right)\cdot 19^{2} + \left(a + 16\right)\cdot 19^{3} + \left(11 a + 18\right)\cdot 19^{4} + \left(6 a + 15\right)\cdot 19^{5} + \left(17 a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 8 + \left(12 a + 18\right)\cdot 19 + \left(10 a + 7\right)\cdot 19^{2} + \left(11 a + 2\right)\cdot 19^{3} + \left(9 a + 8\right)\cdot 19^{4} + \left(5 a + 6\right)\cdot 19^{5} + \left(5 a + 7\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 15 + \left(15 a + 3\right)\cdot 19 + \left(9 a + 3\right)\cdot 19^{2} + \left(7 a + 8\right)\cdot 19^{3} + \left(18 a + 11\right)\cdot 19^{4} + \left(13 a + 12\right)\cdot 19^{5} + \left(5 a + 1\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 13 + \left(6 a + 6\right)\cdot 19 + \left(8 a + 6\right)\cdot 19^{2} + \left(7 a + 3\right)\cdot 19^{3} + \left(9 a + 6\right)\cdot 19^{4} + \left(13 a + 2\right)\cdot 19^{5} + \left(13 a + 7\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 2 + \left(3 a + 13\right)\cdot 19 + \left(9 a + 16\right)\cdot 19^{2} + \left(11 a + 5\right)\cdot 19^{3} + 3\cdot 19^{4} + \left(5 a + 8\right)\cdot 19^{5} + \left(13 a + 12\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,3,5,2)$
$(1,4,5)$
$(1,4,5)(2,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,3)(2,4)(5,6)$$0$
$1$$3$$(1,4,5)(2,6,3)$$2 \zeta_{3}$
$1$$3$$(1,5,4)(2,3,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,4,5)$$\zeta_{3} + 1$
$2$$3$$(1,5,4)$$-\zeta_{3}$
$2$$3$$(1,5,4)(2,6,3)$$-1$
$3$$6$$(1,6,4,3,5,2)$$0$
$3$$6$$(1,2,5,3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.