Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 89\cdot 97 + 21\cdot 97^{2} + 82\cdot 97^{3} + 6\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 57 + 91\cdot 97 + 87\cdot 97^{2} + 65\cdot 97^{3} + 79\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 58 + 55\cdot 97 + 81\cdot 97^{2} + 62\cdot 97^{3} + 58\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 76 + 54\cdot 97 + 2\cdot 97^{2} + 80\cdot 97^{3} + 48\cdot 97^{4} +O\left(97^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(1,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,3)(2,4)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,3)$ | $0$ |
| $2$ | $4$ | $(1,4,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.