Properties

Label 2.3e2_37e2.8t17.1c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3^{2} \cdot 37^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$12321= 3^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 6 x^{6} - x^{5} + 10 x^{4} + 6 x^{3} + 6 x^{2} + 9 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.37.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 113\cdot 223 + 54\cdot 223^{2} + 184\cdot 223^{3} + 126\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 95 + 75\cdot 223 + 67\cdot 223^{2} + 137\cdot 223^{3} + 115\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 118 + 21\cdot 223 + 164\cdot 223^{2} + 80\cdot 223^{3} + 109\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 132 + 183\cdot 223^{2} + 182\cdot 223^{3} + 119\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 146 + 188\cdot 223 + 101\cdot 223^{3} + 195\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 189 + 155\cdot 223 + 67\cdot 223^{2} + 153\cdot 223^{3} + 43\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 202 + 9\cdot 223 + 31\cdot 223^{2} + 4\cdot 223^{3} + 16\cdot 223^{4} +O\left(223^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 214 + 103\cdot 223 + 100\cdot 223^{2} + 48\cdot 223^{3} + 165\cdot 223^{4} +O\left(223^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,6,3,4,7,2)$
$(1,8,3,4)(2,5,6,7)$
$(1,7,3,5)(2,4,6,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(2,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,8)(5,7)$$-2$
$2$$2$$(2,6)(4,8)$$0$
$4$$2$$(1,6)(2,3)(4,5)(7,8)$$0$
$1$$4$$(1,7,3,5)(2,4,6,8)$$-2 \zeta_{4}$
$1$$4$$(1,5,3,7)(2,8,6,4)$$2 \zeta_{4}$
$2$$4$$(1,7,3,5)(2,8,6,4)$$0$
$2$$4$$(2,4,6,8)$$\zeta_{4} - 1$
$2$$4$$(2,8,6,4)$$-\zeta_{4} - 1$
$2$$4$$(1,7,3,5)(2,6)(4,8)$$\zeta_{4} + 1$
$2$$4$$(1,5,3,7)(2,6)(4,8)$$-\zeta_{4} + 1$
$4$$4$$(1,8,3,4)(2,5,6,7)$$0$
$4$$8$$(1,2,7,4,3,6,5,8)$$0$
$4$$8$$(1,4,5,2,3,8,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.