Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 223 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 20 + 113\cdot 223 + 54\cdot 223^{2} + 184\cdot 223^{3} + 126\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 95 + 75\cdot 223 + 67\cdot 223^{2} + 137\cdot 223^{3} + 115\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 118 + 21\cdot 223 + 164\cdot 223^{2} + 80\cdot 223^{3} + 109\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 132 + 183\cdot 223^{2} + 182\cdot 223^{3} + 119\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 146 + 188\cdot 223 + 101\cdot 223^{3} + 195\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 189 + 155\cdot 223 + 67\cdot 223^{2} + 153\cdot 223^{3} + 43\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 202 + 9\cdot 223 + 31\cdot 223^{2} + 4\cdot 223^{3} + 16\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 214 + 103\cdot 223 + 100\cdot 223^{2} + 48\cdot 223^{3} + 165\cdot 223^{4} +O\left(223^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8,5,6,3,4,7,2)$ |
| $(1,8,3,4)(2,5,6,7)$ |
| $(1,7,3,5)(2,4,6,8)$ |
| $(1,3)(2,6)(4,8)(5,7)$ |
| $(2,6)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,6)(4,8)(5,7)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(2,6)(4,8)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(2,3)(4,5)(7,8)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,7,3,5)(2,4,6,8)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,5,3,7)(2,8,6,4)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,7,3,5)(2,8,6,4)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(2,4,6,8)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(2,8,6,4)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,7,3,5)(2,6)(4,8)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,5,3,7)(2,6)(4,8)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $4$ |
$4$ |
$(1,8,3,4)(2,5,6,7)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,2,7,4,3,6,5,8)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,4,5,2,3,8,7,6)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.