Properties

Label 2.3e2_31e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 31^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$8649= 3^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 23 x^{5} + 55 x^{4} - 32 x^{3} + 109 x^{2} - 275 x + 163 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 40 + 86\cdot 97 + 66\cdot 97^{2} + 47\cdot 97^{3} + 89\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 54 + 34\cdot 97 + 47\cdot 97^{2} + 19\cdot 97^{3} + 77\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 73 + 93\cdot 97 + 28\cdot 97^{2} + 45\cdot 97^{3} + 94\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 75 + 74\cdot 97 + 14\cdot 97^{2} + 27\cdot 97^{3} + 77\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 81 + 94\cdot 97 + 58\cdot 97^{2} + 31\cdot 97^{3} + 37\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 82 + 86\cdot 97 + 72\cdot 97^{2} + 18\cdot 97^{3} + 2\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 85 + 41\cdot 97 + 77\cdot 97^{2} + 2\cdot 97^{3} + 17\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 94 + 68\cdot 97 + 20\cdot 97^{2} + 97^{3} + 90\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,6)(3,7)(4,5)$
$(1,3)(4,5)(7,8)$
$(1,4,3,6,8,5,7,2)$
$(1,7,8,3)(2,5,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,6)(3,7)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,3)(4,5)(7,8)$ $0$ $0$
$2$ $4$ $(1,3,8,7)(2,4,6,5)$ $0$ $0$
$4$ $4$ $(1,5,8,4)(2,3,6,7)$ $0$ $0$
$2$ $8$ $(1,4,3,6,8,5,7,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,5,3,2,8,4,7,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.