Properties

Label 2.3e2_31.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$279= 3^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 2 x^{6} + 15 x^{5} + 27 x^{4} + 15 x^{3} - 2 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 74\cdot 97 + 85\cdot 97^{2} + 65\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 76\cdot 97 + 75\cdot 97^{2} + 31\cdot 97^{3} + 20\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 82\cdot 97 + 86\cdot 97^{2} + 59\cdot 97^{3} + 20\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 28\cdot 97 + 34\cdot 97^{2} + 84\cdot 97^{3} + 90\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 63 + 64\cdot 97 + 88\cdot 97^{2} + 28\cdot 97^{3} + 49\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 65 + 45\cdot 97 + 6\cdot 97^{2} + 66\cdot 97^{3} + 76\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 77 + 38\cdot 97 + 22\cdot 97^{2} + 97^{3} + 72\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 89 + 74\cdot 97 + 84\cdot 97^{2} + 17\cdot 97^{3} + 90\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,5)(6,8)$
$(1,3,2,7)(4,8,5,6)$
$(1,4)(2,5)(3,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $-2$
$2$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,8)(3,5)(4,7)$ $0$
$2$ $4$ $(1,3,2,7)(4,8,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.