Properties

Label 2.3e2_23.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$207= 3^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 9 x^{3} + 8 x^{2} - 7 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 31\cdot 53 + 22\cdot 53^{2} + 9\cdot 53^{3} + 52\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 4 + \left(23 a + 8\right)\cdot 53 + \left(26 a + 27\right)\cdot 53^{2} + \left(18 a + 24\right)\cdot 53^{3} + 44 a\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 8\cdot 53 + 8\cdot 53^{2} + 2\cdot 53^{3} + 5\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 14 + \left(23 a + 40\right)\cdot 53 + \left(36 a + 40\right)\cdot 53^{2} + \left(30 a + 8\right)\cdot 53^{3} + \left(45 a + 1\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 42 + \left(29 a + 13\right)\cdot 53 + \left(26 a + 3\right)\cdot 53^{2} + \left(34 a + 19\right)\cdot 53^{3} + 8 a\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 4 + \left(29 a + 4\right)\cdot 53 + \left(16 a + 4\right)\cdot 53^{2} + \left(22 a + 42\right)\cdot 53^{3} + \left(7 a + 46\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)$
$(1,3)(2,6)(4,5)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)$ $0$
$3$ $2$ $(1,6)(2,3)(4,5)$ $0$
$2$ $3$ $(1,5,2)(3,4,6)$ $-1$
$2$ $6$ $(1,4,2,3,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.