Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: $ x^{2} + 6 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 a + 3 + 6\cdot 7 + \left(a + 2\right)\cdot 7^{2} + 5\cdot 7^{3} + 4 a\cdot 7^{4} + \left(4 a + 1\right)\cdot 7^{5} + \left(2 a + 4\right)\cdot 7^{6} + \left(a + 6\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 + 3\cdot 7 + 2\cdot 7^{2} + 4\cdot 7^{3} + 6\cdot 7^{4} + 6\cdot 7^{6} + 4\cdot 7^{7} +O\left(7^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 2 a + 3 + \left(6 a + 6\right)\cdot 7 + a\cdot 7^{2} + \left(2 a + 1\right)\cdot 7^{3} + \left(6 a + 5\right)\cdot 7^{4} + \left(4 a + 3\right)\cdot 7^{5} + \left(6 a + 6\right)\cdot 7^{6} + \left(a + 6\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 5 + 3\cdot 7 + 4\cdot 7^{3} + 7^{4} + 4\cdot 7^{5} + 2\cdot 7^{7} +O\left(7^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 4 a + 6 + \left(6 a + 3\right)\cdot 7 + \left(5 a + 3\right)\cdot 7^{2} + \left(6 a + 4\right)\cdot 7^{3} + \left(2 a + 4\right)\cdot 7^{4} + \left(2 a + 1\right)\cdot 7^{5} + \left(4 a + 2\right)\cdot 7^{6} + \left(5 a + 5\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 a + 5 + 3\cdot 7 + \left(5 a + 3\right)\cdot 7^{2} + \left(4 a + 1\right)\cdot 7^{3} + 2\cdot 7^{4} + \left(2 a + 2\right)\cdot 7^{5} + 7^{6} + \left(5 a + 2\right)\cdot 7^{7} +O\left(7^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3)(4,5)$ |
| $(1,2)(3,5)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,4)(3,5)$ |
$-2$ |
| $3$ |
$2$ |
$(1,2)(3,5)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,5)(3,6)$ |
$0$ |
| $2$ |
$3$ |
$(1,4,5)(2,3,6)$ |
$-1$ |
| $2$ |
$6$ |
$(1,3,4,6,5,2)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.