Properties

Label 2.3e2_19e2.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 19^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$3249= 3^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} + 10 x^{5} - 26 x^{4} - 8 x^{3} + 169 x^{2} + 136 x - 356 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 59\cdot 199 + 14\cdot 199^{2} + 5\cdot 199^{3} + 123\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 69 + 99\cdot 199 + 46\cdot 199^{2} + 36\cdot 199^{3} + 78\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 87 + 33\cdot 199 + 35\cdot 199^{2} + 103\cdot 199^{3} + 102\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 92 + 38\cdot 199 + 65\cdot 199^{2} + 133\cdot 199^{3} + 164\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 97 + 168\cdot 199 + 110\cdot 199^{2} + 153\cdot 199^{3} + 46\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 129 + 5\cdot 199 + 52\cdot 199^{2} + 147\cdot 199^{3} + 95\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 132 + 164\cdot 199 + 21\cdot 199^{2} + 92\cdot 199^{3} + 132\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 151 + 27\cdot 199 + 52\cdot 199^{2} + 125\cdot 199^{3} + 52\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,4,7,8,6,2)$
$(1,5,7,6)(2,3,4,8)$
$(1,7)(2,4)(3,8)(5,6)$
$(1,6)(2,4)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,4)(3,8)(5,6)$ $-2$ $-2$
$4$ $2$ $(1,6)(2,4)(5,7)$ $0$ $0$
$2$ $4$ $(1,5,7,6)(2,3,4,8)$ $0$ $0$
$4$ $4$ $(1,3,7,8)(2,6,4,5)$ $0$ $0$
$2$ $8$ $(1,3,5,4,7,8,6,2)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,8,5,2,7,3,6,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.