Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 41\cdot 43 + 17\cdot 43^{2} + 40\cdot 43^{3} + 2\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 37\cdot 43 + 23\cdot 43^{2} + 7\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 24 + 19\cdot 43^{2} + 25\cdot 43^{3} + 7\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 + 18\cdot 43 + 38\cdot 43^{2} + 6\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 32 + 14\cdot 43 + 4\cdot 43^{2} + 31\cdot 43^{3} + 18\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 33 + 21\cdot 43 + 12\cdot 43^{2} + 34\cdot 43^{3} + 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 35 + 15\cdot 43 + 31\cdot 43^{2} + 15\cdot 43^{3} + 21\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 39 + 21\cdot 43 + 24\cdot 43^{2} + 10\cdot 43^{3} + 4\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,7)(4,8)(5,6)$ |
| $(1,3)(2,6)(4,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,4)(3,5)(6,7)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,7)(4,8)(5,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,7)(2,3,4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.