Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 4\cdot 11 + 11^{2} + 6\cdot 11^{3} + 10\cdot 11^{4} + 5\cdot 11^{5} + 5\cdot 11^{7} + 9\cdot 11^{8} + 10\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 11 + 5\cdot 11^{3} + 10\cdot 11^{4} + 11^{5} + 7\cdot 11^{6} + 7\cdot 11^{7} + 9\cdot 11^{8} + 5\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 2 a^{2} + 3 + \left(4 a^{2} + 10 a + 2\right)\cdot 11 + \left(7 a^{2} + 3 a\right)\cdot 11^{2} + \left(7 a^{2} + 10 a + 1\right)\cdot 11^{3} + \left(a^{2} + 3 a + 9\right)\cdot 11^{4} + \left(a^{2} + 7 a + 9\right)\cdot 11^{5} + \left(6 a^{2} + 2 a + 2\right)\cdot 11^{6} + \left(3 a^{2} + 4 a + 5\right)\cdot 11^{7} + \left(2 a^{2} + 2 a + 7\right)\cdot 11^{8} + \left(a^{2} + 3 a + 3\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 a^{2} + 10 a + 10 + \left(9 a^{2} + 4 a + 6\right)\cdot 11 + \left(2 a^{2} + 5\right)\cdot 11^{2} + \left(5 a^{2} + 3 a + 1\right)\cdot 11^{3} + \left(2 a^{2} + 5 a + 4\right)\cdot 11^{4} + \left(4 a^{2} + 6 a + 9\right)\cdot 11^{5} + \left(3 a^{2} + 3 a + 10\right)\cdot 11^{6} + \left(9 a^{2} + 4 a + 3\right)\cdot 11^{7} + \left(2 a^{2} + 4 a\right)\cdot 11^{8} + \left(6 a^{2} + 8 a + 8\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 7 a^{2} + 5 a + 6 + \left(10 a^{2} + 9 a + 3\right)\cdot 11 + \left(5 a + 6\right)\cdot 11^{2} + \left(9 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 10 a + 2\right)\cdot 11^{4} + \left(4 a + 9\right)\cdot 11^{5} + \left(10 a^{2} + 7 a\right)\cdot 11^{6} + \left(6 a^{2} + 5 a + 6\right)\cdot 11^{7} + \left(9 a^{2} + 9 a + 2\right)\cdot 11^{8} + \left(2 a^{2} + a + 2\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 2 a^{2} + 6 a + 3 + \left(7 a^{2} + 2 a + 6\right)\cdot 11 + \left(2 a^{2} + a + 8\right)\cdot 11^{2} + \left(5 a^{2} + 2 a + 8\right)\cdot 11^{3} + \left(a^{2} + 7 a + 8\right)\cdot 11^{4} + \left(9 a^{2} + 9 a + 5\right)\cdot 11^{5} + \left(5 a^{2} + 2\right)\cdot 11^{6} + \left(a + 1\right)\cdot 11^{7} + \left(10 a^{2} + 10 a + 3\right)\cdot 11^{8} + \left(6 a^{2} + 5 a\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 7 a^{2} + 9 a + 4 + \left(2 a^{2} + 5 a + 1\right)\cdot 11 + \left(a^{2} + 7 a + 7\right)\cdot 11^{2} + \left(4 a^{2} + 8 a + 3\right)\cdot 11^{3} + \left(6 a^{2} + 7 a + 9\right)\cdot 11^{4} + 8 a\cdot 11^{5} + \left(6 a^{2} + 6 a + 7\right)\cdot 11^{6} + \left(10 a^{2} + 10 a + 5\right)\cdot 11^{7} + \left(4 a^{2} + 2 a + 10\right)\cdot 11^{8} + \left(9 a^{2} + 9 a + 4\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 9 a^{2} + 3 a + 3 + \left(9 a^{2} + 7\right)\cdot 11 + \left(6 a^{2} + 3 a + 3\right)\cdot 11^{2} + \left(a^{2} + 10 a\right)\cdot 11^{3} + \left(2 a^{2} + 8 a\right)\cdot 11^{4} + \left(6 a^{2} + 6 a + 1\right)\cdot 11^{5} + \left(a^{2} + 1\right)\cdot 11^{6} + \left(2 a^{2} + 7 a + 9\right)\cdot 11^{7} + \left(3 a^{2} + 3 a\right)\cdot 11^{8} + \left(6 a^{2} + 4 a + 8\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(3,5,6)(4,8,7)$ |
| $(1,8,2,6)(3,4,7,5)$ |
| $(1,4,2,5)(3,6,7,8)$ |
| $(1,2)(3,7)(4,5)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,7)(4,5)(6,8)$ |
$-2$ |
| $4$ |
$3$ |
$(3,5,6)(4,8,7)$ |
$-1$ |
| $4$ |
$3$ |
$(3,6,5)(4,7,8)$ |
$-1$ |
| $6$ |
$4$ |
$(1,4,2,5)(3,6,7,8)$ |
$0$ |
| $4$ |
$6$ |
$(1,2)(3,4,6,7,5,8)$ |
$1$ |
| $4$ |
$6$ |
$(1,2)(3,8,5,7,6,4)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.