Properties

Label 2.3e2_163.8t12.1
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{2} \cdot 163 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$1467= 3^{2} \cdot 163 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 13 x^{6} + 24 x^{5} + 48 x^{4} - 73 x^{3} - 38 x^{2} + 9 x + 3 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 4\cdot 11 + 11^{2} + 6\cdot 11^{3} + 10\cdot 11^{4} + 5\cdot 11^{5} + 5\cdot 11^{7} + 9\cdot 11^{8} + 10\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 4 + 11 + 5\cdot 11^{3} + 10\cdot 11^{4} + 11^{5} + 7\cdot 11^{6} + 7\cdot 11^{7} + 9\cdot 11^{8} + 5\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + 3 + \left(4 a^{2} + 10 a + 2\right)\cdot 11 + \left(7 a^{2} + 3 a\right)\cdot 11^{2} + \left(7 a^{2} + 10 a + 1\right)\cdot 11^{3} + \left(a^{2} + 3 a + 9\right)\cdot 11^{4} + \left(a^{2} + 7 a + 9\right)\cdot 11^{5} + \left(6 a^{2} + 2 a + 2\right)\cdot 11^{6} + \left(3 a^{2} + 4 a + 5\right)\cdot 11^{7} + \left(2 a^{2} + 2 a + 7\right)\cdot 11^{8} + \left(a^{2} + 3 a + 3\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{2} + 10 a + 10 + \left(9 a^{2} + 4 a + 6\right)\cdot 11 + \left(2 a^{2} + 5\right)\cdot 11^{2} + \left(5 a^{2} + 3 a + 1\right)\cdot 11^{3} + \left(2 a^{2} + 5 a + 4\right)\cdot 11^{4} + \left(4 a^{2} + 6 a + 9\right)\cdot 11^{5} + \left(3 a^{2} + 3 a + 10\right)\cdot 11^{6} + \left(9 a^{2} + 4 a + 3\right)\cdot 11^{7} + \left(2 a^{2} + 4 a\right)\cdot 11^{8} + \left(6 a^{2} + 8 a + 8\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 7 a^{2} + 5 a + 6 + \left(10 a^{2} + 9 a + 3\right)\cdot 11 + \left(5 a + 6\right)\cdot 11^{2} + \left(9 a^{2} + 9 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 10 a + 2\right)\cdot 11^{4} + \left(4 a + 9\right)\cdot 11^{5} + \left(10 a^{2} + 7 a\right)\cdot 11^{6} + \left(6 a^{2} + 5 a + 6\right)\cdot 11^{7} + \left(9 a^{2} + 9 a + 2\right)\cdot 11^{8} + \left(2 a^{2} + a + 2\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 6 a + 3 + \left(7 a^{2} + 2 a + 6\right)\cdot 11 + \left(2 a^{2} + a + 8\right)\cdot 11^{2} + \left(5 a^{2} + 2 a + 8\right)\cdot 11^{3} + \left(a^{2} + 7 a + 8\right)\cdot 11^{4} + \left(9 a^{2} + 9 a + 5\right)\cdot 11^{5} + \left(5 a^{2} + 2\right)\cdot 11^{6} + \left(a + 1\right)\cdot 11^{7} + \left(10 a^{2} + 10 a + 3\right)\cdot 11^{8} + \left(6 a^{2} + 5 a\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 9 a + 4 + \left(2 a^{2} + 5 a + 1\right)\cdot 11 + \left(a^{2} + 7 a + 7\right)\cdot 11^{2} + \left(4 a^{2} + 8 a + 3\right)\cdot 11^{3} + \left(6 a^{2} + 7 a + 9\right)\cdot 11^{4} + 8 a\cdot 11^{5} + \left(6 a^{2} + 6 a + 7\right)\cdot 11^{6} + \left(10 a^{2} + 10 a + 5\right)\cdot 11^{7} + \left(4 a^{2} + 2 a + 10\right)\cdot 11^{8} + \left(9 a^{2} + 9 a + 4\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 9 a^{2} + 3 a + 3 + \left(9 a^{2} + 7\right)\cdot 11 + \left(6 a^{2} + 3 a + 3\right)\cdot 11^{2} + \left(a^{2} + 10 a\right)\cdot 11^{3} + \left(2 a^{2} + 8 a\right)\cdot 11^{4} + \left(6 a^{2} + 6 a + 1\right)\cdot 11^{5} + \left(a^{2} + 1\right)\cdot 11^{6} + \left(2 a^{2} + 7 a + 9\right)\cdot 11^{7} + \left(3 a^{2} + 3 a\right)\cdot 11^{8} + \left(6 a^{2} + 4 a + 8\right)\cdot 11^{9} +O\left(11^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,5,6)(4,8,7)$
$(1,8,2,6)(3,4,7,5)$
$(1,4,2,5)(3,6,7,8)$
$(1,2)(3,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $-2$ $-2$
$4$ $3$ $(3,5,6)(4,8,7)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$4$ $3$ $(3,6,5)(4,7,8)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$6$ $4$ $(1,4,2,5)(3,6,7,8)$ $0$ $0$
$4$ $6$ $(1,2)(3,4,6,7,5,8)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$4$ $6$ $(1,2)(3,8,5,7,6,4)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.