Properties

Label 2.3e2_13e2_31.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 3^{2} \cdot 13^{2} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$47151= 3^{2} \cdot 13^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 29 x^{4} - 17 x^{3} + 289 x^{2} - 159 x + 1011 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 5 + \left(6 a + 6\right)\cdot 11 + \left(7 a + 4\right)\cdot 11^{2} + \left(3 a + 8\right)\cdot 11^{3} + \left(7 a + 8\right)\cdot 11^{4} + \left(3 a + 2\right)\cdot 11^{5} + \left(7 a + 4\right)\cdot 11^{6} + \left(4 a + 6\right)\cdot 11^{7} + 5 a\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 5 a + \left(4 a + 3\right)\cdot 11 + \left(3 a + 7\right)\cdot 11^{2} + \left(7 a + 3\right)\cdot 11^{3} + \left(3 a + 6\right)\cdot 11^{4} + \left(7 a + 4\right)\cdot 11^{5} + \left(3 a + 2\right)\cdot 11^{6} + \left(6 a + 5\right)\cdot 11^{7} + \left(5 a + 5\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 9 + \left(6 a + 4\right)\cdot 11 + \left(7 a + 5\right)\cdot 11^{2} + \left(3 a + 7\right)\cdot 11^{3} + \left(7 a + 2\right)\cdot 11^{4} + \left(3 a + 8\right)\cdot 11^{5} + \left(7 a + 9\right)\cdot 11^{6} + \left(4 a + 4\right)\cdot 11^{7} + \left(5 a + 10\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 10 + 7\cdot 11 + 9\cdot 11^{2} + 4\cdot 11^{3} + 4\cdot 11^{4} + 6\cdot 11^{5} + 11^{6} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 3 + 6\cdot 11 + 10\cdot 11^{2} + 3\cdot 11^{3} + 9\cdot 11^{4} + 7\cdot 11^{6} + 9\cdot 11^{7} + 9\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 7 + \left(4 a + 4\right)\cdot 11 + \left(3 a + 6\right)\cdot 11^{2} + \left(7 a + 4\right)\cdot 11^{3} + \left(3 a + 1\right)\cdot 11^{4} + \left(7 a + 10\right)\cdot 11^{5} + \left(3 a + 7\right)\cdot 11^{6} + \left(6 a + 6\right)\cdot 11^{7} + \left(5 a + 6\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)(4,5)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$3$ $2$ $(1,4)(3,5)$ $0$
$2$ $3$ $(1,6,4)(2,5,3)$ $-1$
$2$ $6$ $(1,5,6,3,4,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.