Properties

Label 2.3e2_13e2_19e2.24t7.4c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{2} \cdot 13^{2} \cdot 19^{2}$
Root number -1
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$549081= 3^{2} \cdot 13^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} - 13 x^{5} + 7 x^{4} + 127 x^{3} + 182 x^{2} + 67 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 24T7
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 6\cdot 11 + 6\cdot 11^{2} + 2\cdot 11^{3} + 2\cdot 11^{4} + 11^{5} + 11^{6} + 11^{7} + 3\cdot 11^{8} + 4\cdot 11^{9} + 3\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{2} + 4 a + 3 + \left(8 a^{2} + 7 a + 8\right)\cdot 11 + \left(4 a^{2} + 8 a + 4\right)\cdot 11^{2} + \left(6 a^{2} + 10 a\right)\cdot 11^{3} + \left(7 a^{2} + 9 a + 6\right)\cdot 11^{4} + \left(10 a^{2} + 5 a + 10\right)\cdot 11^{5} + \left(a^{2} + 8 a + 7\right)\cdot 11^{6} + \left(a^{2} + 10 a + 6\right)\cdot 11^{7} + \left(7 a^{2} + 6 a + 5\right)\cdot 11^{8} + \left(9 a^{2} + 5 a\right)\cdot 11^{9} + \left(9 a^{2} + 5 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 6 a + 2 + \left(3 a^{2} + 9 a + 2\right)\cdot 11 + \left(7 a^{2} + 4 a + 10\right)\cdot 11^{2} + \left(3 a + 6\right)\cdot 11^{3} + \left(8 a^{2} + 2 a\right)\cdot 11^{4} + \left(6 a^{2} + 2 a + 4\right)\cdot 11^{5} + \left(6 a^{2} + 5 a + 10\right)\cdot 11^{6} + \left(2 a^{2} + 2 a + 8\right)\cdot 11^{7} + \left(a^{2} + 6 a + 2\right)\cdot 11^{8} + \left(9 a + 5\right)\cdot 11^{9} + \left(3 a^{2} + 9 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 4 + \left(a^{2} + 9 a + 2\right)\cdot 11 + \left(a^{2} + a + 7\right)\cdot 11^{2} + \left(3 a^{2} + 4 a + 10\right)\cdot 11^{3} + \left(3 a^{2} + 9 a + 3\right)\cdot 11^{4} + \left(6 a^{2} + 4 a + 8\right)\cdot 11^{5} + \left(8 a^{2} + 5\right)\cdot 11^{6} + \left(5 a^{2} + 3 a + 5\right)\cdot 11^{7} + \left(9 a^{2} + 8 a + 1\right)\cdot 11^{8} + \left(9 a^{2} + 5 a + 8\right)\cdot 11^{9} + \left(9 a^{2} + 9 a\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 9 a + 5 + \left(a^{2} + 4 a + 3\right)\cdot 11 + \left(5 a^{2} + 5\right)\cdot 11^{2} + \left(a^{2} + 7 a + 8\right)\cdot 11^{3} + \left(2 a + 10\right)\cdot 11^{4} + \left(5 a^{2} + 2\right)\cdot 11^{5} + \left(2 a + 2\right)\cdot 11^{6} + \left(4 a^{2} + 8 a + 3\right)\cdot 11^{7} + \left(5 a^{2} + 6 a + 3\right)\cdot 11^{8} + \left(2 a^{2} + 10 a + 9\right)\cdot 11^{9} + \left(2 a^{2} + 6 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 9 a + 5 + \left(5 a^{2} + 9 a\right)\cdot 11 + \left(a^{2} + 4 a + 6\right)\cdot 11^{2} + \left(10 a^{2} + 9 a + 8\right)\cdot 11^{3} + \left(7 a^{2} + 6 a + 7\right)\cdot 11^{4} + \left(9 a^{2} + 9 a\right)\cdot 11^{5} + \left(6 a^{2} + 7 a + 7\right)\cdot 11^{6} + \left(9 a^{2} + 10 a + 3\right)\cdot 11^{7} + \left(8 a^{2} + 5 a + 9\right)\cdot 11^{8} + \left(9 a^{2} + 3 a + 10\right)\cdot 11^{9} + \left(a^{2} + 9 a + 6\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 3 + 9\cdot 11 + 7\cdot 11^{2} + 3\cdot 11^{3} + 7\cdot 11^{4} + 2\cdot 11^{5} + 5\cdot 11^{8} + 6\cdot 11^{9} + 9\cdot 11^{10} +O\left(11^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 3 a^{2} + 7 a + 4 + \left(2 a^{2} + 2 a\right)\cdot 11 + \left(2 a^{2} + a + 7\right)\cdot 11^{2} + \left(9 a + 2\right)\cdot 11^{3} + \left(6 a^{2} + a + 5\right)\cdot 11^{4} + \left(5 a^{2} + 10 a + 2\right)\cdot 11^{5} + \left(8 a^{2} + 8 a + 9\right)\cdot 11^{6} + \left(9 a^{2} + 8 a + 3\right)\cdot 11^{7} + \left(9 a + 2\right)\cdot 11^{8} + \left(a^{2} + 8 a + 10\right)\cdot 11^{9} + \left(6 a^{2} + 2 a + 8\right)\cdot 11^{10} +O\left(11^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5,4)(3,6,8)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,4,7,6)(2,5,8,3)$
$(1,5,7,3)(2,6,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$4$$3$$(1,4,8)(2,7,6)$$-1$
$4$$3$$(1,8,4)(2,6,7)$$-1$
$6$$4$$(1,4,7,6)(2,5,8,3)$$0$
$4$$6$$(1,2,4,7,8,6)(3,5)$$1$
$4$$6$$(1,6,8,7,4,2)(3,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.