Properties

Label 2.3e2_13e2_17e2.8t5.1
Dimension 2
Group $Q_8$
Conductor $ 3^{2} \cdot 13^{2} \cdot 17^{2}$
Frobenius-Schur indicator -1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8$
Conductor:$439569= 3^{2} \cdot 13^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 154 x^{6} + 205 x^{5} + 2189 x^{4} + 3707 x^{3} + 44592 x^{2} + 43925 x + 46411 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Q_8$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 38 + 104\cdot 127 + 40\cdot 127^{2} + 10\cdot 127^{3} + 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 4\cdot 127 + 103\cdot 127^{2} + 65\cdot 127^{3} + 13\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 + 26\cdot 127 + 69\cdot 127^{2} + 121\cdot 127^{3} + 19\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 72 + 82\cdot 127 + 95\cdot 127^{2} + 96\cdot 127^{3} + 105\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 76 + 88\cdot 127 + 81\cdot 127^{2} + 17\cdot 127^{3} + 9\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 91 + 87\cdot 127 + 74\cdot 127^{2} + 23\cdot 127^{3} + 80\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 120 + 118\cdot 127 + 112\cdot 127^{2} + 71\cdot 127^{3} + 82\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 124 + 121\cdot 127 + 56\cdot 127^{2} + 100\cdot 127^{3} + 68\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,8)(3,4)(5,7)$
$(1,5,6,7)(2,3,8,4)$
$(1,3,6,4)(2,7,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,8)(3,4)(5,7)$ $-2$
$2$ $4$ $(1,5,6,7)(2,3,8,4)$ $0$
$2$ $4$ $(1,3,6,4)(2,7,8,5)$ $0$
$2$ $4$ $(1,2,6,8)(3,5,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.