Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 139 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 84\cdot 139 + 35\cdot 139^{2} + 110\cdot 139^{3} + 86\cdot 139^{4} + 23\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 + 136\cdot 139 + 63\cdot 139^{2} + 65\cdot 139^{3} + 60\cdot 139^{4} + 108\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 5\cdot 139 + 33\cdot 139^{2} + 38\cdot 139^{3} + 93\cdot 139^{4} + 32\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 41 + 12\cdot 139 + 105\cdot 139^{2} + 122\cdot 139^{3} + 111\cdot 139^{4} + 112\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 98 + 41\cdot 139 + 20\cdot 139^{2} + 106\cdot 139^{3} + 127\cdot 139^{4} + 94\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 114 + 89\cdot 139 + 45\cdot 139^{2} + 44\cdot 139^{3} + 6\cdot 139^{4} + 97\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 123 + 42\cdot 139 + 104\cdot 139^{2} + 59\cdot 139^{3} + 6\cdot 139^{4} + 64\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 136 + 4\cdot 139 + 9\cdot 139^{2} + 9\cdot 139^{3} + 63\cdot 139^{4} + 22\cdot 139^{5} +O\left(139^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,6)(3,5)(7,8)$ |
| $(1,2,4,6)(3,8,5,7)$ |
| $(1,7,4,8)(2,3,6,5)$ |
| $(1,6,4,2)$ |
| $(1,4)(2,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,6)(3,5)(7,8)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(1,4)(2,6)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,8)(4,5)(6,7)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,2,4,6)(3,8,5,7)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,6,4,2)(3,7,5,8)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $2$ |
$4$ |
$(1,6,4,2)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,2,4,6)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,2,4,6)(3,5)(7,8)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,4,2)(3,5)(7,8)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,6,4,2)(3,8,5,7)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,7,4,8)(2,3,6,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,7,2,3,4,8,6,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,3,6,7,4,5,2,8)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.