Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 48 + 52\cdot 139 + 37\cdot 139^{2} + 86\cdot 139^{3} + 30\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 55 + 24\cdot 139 + 70\cdot 139^{2} + 32\cdot 139^{3} + 93\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 74 + 93\cdot 139 + 61\cdot 139^{2} + 116\cdot 139^{3} + 51\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 77 + 83\cdot 139 + 15\cdot 139^{2} + 95\cdot 139^{3} + 98\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 90 + 116\cdot 139 + 20\cdot 139^{2} + 25\cdot 139^{3} + 118\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 93 + 94\cdot 139 + 130\cdot 139^{2} + 28\cdot 139^{3} + 62\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 122 + 72\cdot 139 + 124\cdot 139^{2} + 31\cdot 139^{3} + 123\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 136 + 17\cdot 139 + 95\cdot 139^{2} + 117\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6,2,8)(3,5,4,7)$ |
| $(3,7,4,5)$ |
| $(3,4)(5,7)$ |
| $(1,5)(2,7)(3,8)(4,6)$ |
| $(1,2)(3,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)(5,7)(6,8)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(3,4)(5,7)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,7)(3,8)(4,6)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,6,2,8)(3,5,4,7)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,8,2,6)(3,7,4,5)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $2$ |
$4$ |
$(3,7,4,5)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(3,5,4,7)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,2)(3,5,4,7)(6,8)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,2)(3,7,4,5)(6,8)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,6,2,8)(3,7,4,5)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,7,2,5)(3,8,4,6)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,3,8,7,2,4,6,5)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,7,6,3,2,5,8,4)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.