Properties

Label 2.3e2_13.8t17.2c2
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3^{2} \cdot 13 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$117= 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 5 x^{6} + 15 x^{5} + 15 x^{4} - 6 x^{3} - 71 x^{2} - 36 x + 133 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.13.4t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 11 + 84\cdot 139 + 35\cdot 139^{2} + 110\cdot 139^{3} + 86\cdot 139^{4} + 23\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 136\cdot 139 + 63\cdot 139^{2} + 65\cdot 139^{3} + 60\cdot 139^{4} + 108\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 19 + 5\cdot 139 + 33\cdot 139^{2} + 38\cdot 139^{3} + 93\cdot 139^{4} + 32\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 41 + 12\cdot 139 + 105\cdot 139^{2} + 122\cdot 139^{3} + 111\cdot 139^{4} + 112\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 98 + 41\cdot 139 + 20\cdot 139^{2} + 106\cdot 139^{3} + 127\cdot 139^{4} + 94\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 114 + 89\cdot 139 + 45\cdot 139^{2} + 44\cdot 139^{3} + 6\cdot 139^{4} + 97\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 123 + 42\cdot 139 + 104\cdot 139^{2} + 59\cdot 139^{3} + 6\cdot 139^{4} + 64\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 136 + 4\cdot 139 + 9\cdot 139^{2} + 9\cdot 139^{3} + 63\cdot 139^{4} + 22\cdot 139^{5} +O\left(139^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,6)(3,5)(7,8)$
$(1,2,4,6)(3,8,5,7)$
$(1,7,4,8)(2,3,6,5)$
$(1,6,4,2)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,6)(3,5)(7,8)$$-2$
$2$$2$$(1,4)(2,6)$$0$
$4$$2$$(1,3)(2,8)(4,5)(6,7)$$0$
$1$$4$$(1,2,4,6)(3,8,5,7)$$-2 \zeta_{4}$
$1$$4$$(1,6,4,2)(3,7,5,8)$$2 \zeta_{4}$
$2$$4$$(1,6,4,2)$$-\zeta_{4} - 1$
$2$$4$$(1,2,4,6)$$\zeta_{4} - 1$
$2$$4$$(1,2,4,6)(3,5)(7,8)$$\zeta_{4} + 1$
$2$$4$$(1,6,4,2)(3,5)(7,8)$$-\zeta_{4} + 1$
$2$$4$$(1,6,4,2)(3,8,5,7)$$0$
$4$$4$$(1,7,4,8)(2,3,6,5)$$0$
$4$$8$$(1,7,2,3,4,8,6,5)$$0$
$4$$8$$(1,3,6,7,4,5,2,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.