Properties

Label 2.3e2_1291.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 1291 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11619= 3^{2} \cdot 1291 $
Artin number field: Splitting field of $f= x^{8} - 39 x^{6} + 2109 x^{4} + 22932 x^{2} + 345744 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.1291.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 12 + 58\cdot 73 + 35\cdot 73^{2} + 29\cdot 73^{3} + 16\cdot 73^{4} + 30\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 32 + 49\cdot 73 + 13\cdot 73^{2} + 72\cdot 73^{3} + 57\cdot 73^{4} + 70\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 35 + 7\cdot 73 + 14\cdot 73^{2} + 54\cdot 73^{3} + 6\cdot 73^{4} + 35\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 36 + 31\cdot 73 + 37\cdot 73^{2} + 66\cdot 73^{3} + 56\cdot 73^{4} + 43\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 37 + 41\cdot 73 + 35\cdot 73^{2} + 6\cdot 73^{3} + 16\cdot 73^{4} + 29\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 38 + 65\cdot 73 + 58\cdot 73^{2} + 18\cdot 73^{3} + 66\cdot 73^{4} + 37\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 41 + 23\cdot 73 + 59\cdot 73^{2} + 15\cdot 73^{4} + 2\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 61 + 14\cdot 73 + 37\cdot 73^{2} + 43\cdot 73^{3} + 56\cdot 73^{4} + 42\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.