Properties

Label 2.3e2_1291.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 1291 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$11619= 3^{2} \cdot 1291 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 30 x^{2} + 11 x + 247 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 13 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3\cdot 13 + 10\cdot 13^{2} + 10\cdot 13^{3} + 8\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 + 8\cdot 13 + 10\cdot 13^{2} + 11\cdot 13^{3} + 10\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 + 11\cdot 13 + 8\cdot 13^{2} + 5\cdot 13^{3} + 4\cdot 13^{4} + 2\cdot 13^{5} +O\left(13^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 + 2\cdot 13 + 9\cdot 13^{2} + 10\cdot 13^{3} + 6\cdot 13^{4} + 5\cdot 13^{5} +O\left(13^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.