Properties

Label 2.3e2_127.8t12.1
Dimension 2
Group $\SL(2,3)$
Conductor $ 3^{2} \cdot 127 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$1143= 3^{2} \cdot 127 $
Artin number field: Splitting field of $f= x^{8} - 17 x^{6} + 78 x^{4} - 53 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 4 a^{2} + 13 a + 11 + \left(2 a^{2} + 9 a + 5\right)\cdot 17 + \left(5 a^{2} + 4 a + 10\right)\cdot 17^{2} + \left(12 a^{2} + 5 a + 13\right)\cdot 17^{3} + \left(12 a^{2} + a + 6\right)\cdot 17^{4} + \left(15 a^{2} + a + 15\right)\cdot 17^{5} + \left(9 a^{2} + 5 a + 6\right)\cdot 17^{6} + \left(3 a^{2} + 15 a + 9\right)\cdot 17^{7} + \left(13 a^{2} + 16 a + 14\right)\cdot 17^{8} + \left(13 a^{2} + 7 a + 14\right)\cdot 17^{9} + \left(6 a^{2} + 8 a + 5\right)\cdot 17^{10} + \left(6 a^{2} + a + 15\right)\cdot 17^{11} + \left(5 a^{2} + 7 a + 3\right)\cdot 17^{12} + \left(5 a^{2} + 9 a + 16\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 13 + 16\cdot 17 + 3\cdot 17^{2} + 12\cdot 17^{3} + 14\cdot 17^{4} + 3\cdot 17^{5} + 14\cdot 17^{6} + 17^{7} + 6\cdot 17^{8} + 9\cdot 17^{9} + 16\cdot 17^{10} + 14\cdot 17^{11} + 6\cdot 17^{12} + 6\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 8 a + 12 + \left(7 a^{2} + 6 a\right)\cdot 17 + \left(a^{2} + a + 11\right)\cdot 17^{2} + \left(2 a^{2} + 7 a + 1\right)\cdot 17^{3} + \left(4 a^{2} + 8 a + 10\right)\cdot 17^{4} + \left(16 a^{2} + 11\right)\cdot 17^{5} + \left(9 a^{2} + 3 a\right)\cdot 17^{6} + \left(12 a^{2} + 10 a + 7\right)\cdot 17^{7} + \left(10 a^{2} + 16 a + 1\right)\cdot 17^{8} + \left(10 a^{2} + 5 a + 7\right)\cdot 17^{9} + \left(4 a^{2} + a + 7\right)\cdot 17^{10} + \left(a^{2} + 13 a + 12\right)\cdot 17^{11} + \left(2 a^{2} + 15 a + 6\right)\cdot 17^{12} + \left(5 a^{2} + 13 a + 13\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 4 }$ $=$ $ a^{2} + 12 a + 9 + \left(5 a^{2} + 13 a + 7\right)\cdot 17 + \left(13 a^{2} + 13 a + 4\right)\cdot 17^{2} + \left(6 a^{2} + a + 4\right)\cdot 17^{3} + \left(8 a^{2} + 7 a + 15\right)\cdot 17^{4} + \left(16 a + 10\right)\cdot 17^{5} + \left(14 a + 11\right)\cdot 17^{6} + \left(9 a^{2} + 11 a + 1\right)\cdot 17^{7} + \left(14 a^{2} + 16 a + 4\right)\cdot 17^{8} + \left(13 a^{2} + 14 a + 9\right)\cdot 17^{9} + \left(14 a^{2} + 9 a + 5\right)\cdot 17^{10} + \left(11 a^{2} + 11 a + 13\right)\cdot 17^{11} + \left(13 a^{2} + 8 a + 3\right)\cdot 17^{12} + \left(16 a^{2} + 4 a + 1\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 13 a^{2} + 4 a + 6 + \left(14 a^{2} + 7 a + 11\right)\cdot 17 + \left(11 a^{2} + 12 a + 6\right)\cdot 17^{2} + \left(4 a^{2} + 11 a + 3\right)\cdot 17^{3} + \left(4 a^{2} + 15 a + 10\right)\cdot 17^{4} + \left(a^{2} + 15 a + 1\right)\cdot 17^{5} + \left(7 a^{2} + 11 a + 10\right)\cdot 17^{6} + \left(13 a^{2} + a + 7\right)\cdot 17^{7} + \left(3 a^{2} + 2\right)\cdot 17^{8} + \left(3 a^{2} + 9 a + 2\right)\cdot 17^{9} + \left(10 a^{2} + 8 a + 11\right)\cdot 17^{10} + \left(10 a^{2} + 15 a + 1\right)\cdot 17^{11} + \left(11 a^{2} + 9 a + 13\right)\cdot 17^{12} + \left(11 a^{2} + 7 a\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 4 + 13\cdot 17^{2} + 4\cdot 17^{3} + 2\cdot 17^{4} + 13\cdot 17^{5} + 2\cdot 17^{6} + 15\cdot 17^{7} + 10\cdot 17^{8} + 7\cdot 17^{9} + 2\cdot 17^{11} + 10\cdot 17^{12} + 10\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 12 a^{2} + 9 a + 5 + \left(9 a^{2} + 10 a + 16\right)\cdot 17 + \left(15 a^{2} + 15 a + 5\right)\cdot 17^{2} + \left(14 a^{2} + 9 a + 15\right)\cdot 17^{3} + \left(12 a^{2} + 8 a + 6\right)\cdot 17^{4} + \left(16 a + 5\right)\cdot 17^{5} + \left(7 a^{2} + 13 a + 16\right)\cdot 17^{6} + \left(4 a^{2} + 6 a + 9\right)\cdot 17^{7} + \left(6 a^{2} + 15\right)\cdot 17^{8} + \left(6 a^{2} + 11 a + 9\right)\cdot 17^{9} + \left(12 a^{2} + 15 a + 9\right)\cdot 17^{10} + \left(15 a^{2} + 3 a + 4\right)\cdot 17^{11} + \left(14 a^{2} + a + 10\right)\cdot 17^{12} + \left(11 a^{2} + 3 a + 3\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 16 a^{2} + 5 a + 8 + \left(11 a^{2} + 3 a + 9\right)\cdot 17 + \left(3 a^{2} + 3 a + 12\right)\cdot 17^{2} + \left(10 a^{2} + 15 a + 12\right)\cdot 17^{3} + \left(8 a^{2} + 9 a + 1\right)\cdot 17^{4} + \left(16 a^{2} + 6\right)\cdot 17^{5} + \left(16 a^{2} + 2 a + 5\right)\cdot 17^{6} + \left(7 a^{2} + 5 a + 15\right)\cdot 17^{7} + \left(2 a^{2} + 12\right)\cdot 17^{8} + \left(3 a^{2} + 2 a + 7\right)\cdot 17^{9} + \left(2 a^{2} + 7 a + 11\right)\cdot 17^{10} + \left(5 a^{2} + 5 a + 3\right)\cdot 17^{11} + \left(3 a^{2} + 8 a + 13\right)\cdot 17^{12} + \left(12 a + 15\right)\cdot 17^{13} +O\left(17^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,4)(2,3,6,7)$
$(1,2,8)(4,5,6)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,6,5,2)(3,4,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-2$ $-2$
$4$ $3$ $(1,2,8)(4,5,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$4$ $3$ $(1,8,2)(4,6,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$6$ $4$ $(1,8,5,4)(2,3,6,7)$ $0$ $0$
$4$ $6$ $(1,6,8,5,2,4)(3,7)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$4$ $6$ $(1,4,2,5,8,6)(3,7)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.