Properties

Label 2.3e2_11e2.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 3^{2} \cdot 11^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$1089= 3^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - x^{6} - 5 x^{5} + 16 x^{4} - x^{3} - 4 x^{2} - 28 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 163 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 162\cdot 163 + 150\cdot 163^{2} + 20\cdot 163^{3} + 10\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 134\cdot 163 + 120\cdot 163^{2} + 24\cdot 163^{3} + 62\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 + 85\cdot 163 + 113\cdot 163^{2} + 108\cdot 163^{3} + 147\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 72\cdot 163 + 48\cdot 163^{2} + 155\cdot 163^{3} + 119\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 115\cdot 163 + 21\cdot 163^{2} + 157\cdot 163^{3} + 31\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 72 + 108\cdot 163 + 23\cdot 163^{2} + 104\cdot 163^{3} + 44\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 109 + 107\cdot 163 + 103\cdot 163^{2} + 8\cdot 163^{3} + 106\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 145 + 29\cdot 163 + 69\cdot 163^{2} + 72\cdot 163^{3} + 129\cdot 163^{4} +O\left(163^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,7)(4,6,5,8)$
$(1,5,2,4)(3,6,7,8)$
$(1,2)(3,7)(4,5)(6,8)$
$(1,3)(2,7)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,7)(4,5)(6,8)$$-2$
$4$$2$$(1,3)(2,7)(4,5)$$0$
$2$$4$$(1,3,2,7)(4,6,5,8)$$0$
$4$$4$$(1,5,2,4)(3,6,7,8)$$0$
$2$$8$$(1,4,3,6,2,5,7,8)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,5,3,8,2,4,7,6)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.