# Properties

 Label 2.3e2_11.6t5.1 Dimension 2 Group $S_3\times C_3$ Conductor $3^{2} \cdot 11$ Frobenius-Schur indicator 0

# Related objects

## Basic invariants

 Dimension: $2$ Group: $S_3\times C_3$ Conductor: $99= 3^{2} \cdot 11$ Artin number field: Splitting field of $f= x^{6} - x^{4} - 2 x^{3} + 3 x^{2} + x + 1$ over $\Q$ Size of Galois orbit: 2 Smallest containing permutation representation: $S_3\times C_3$ Parity: Odd

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $x^{2} + 16 x + 3$
Roots:
 $r_{ 1 }$ $=$ $11 a + 1 + \left(a + 2\right)\cdot 17 + \left(15 a + 1\right)\cdot 17^{2} + 15 a\cdot 17^{3} + \left(5 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ $r_{ 2 }$ $=$ $6 a + 12 + \left(15 a + 9\right)\cdot 17 + \left(a + 14\right)\cdot 17^{2} + a\cdot 17^{3} + \left(11 a + 12\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ $r_{ 3 }$ $=$ $14 a + 6 + \left(13 a + 1\right)\cdot 17 + \left(2 a + 15\right)\cdot 17^{2} + 14\cdot 17^{3} + 14\cdot 17^{4} +O\left(17^{ 5 }\right)$ $r_{ 4 }$ $=$ $3 a + 13 + \left(12 a + 13\right)\cdot 17 + \left(4 a + 11\right)\cdot 17^{2} + \left(a + 4\right)\cdot 17^{3} + \left(11 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ $r_{ 5 }$ $=$ $3 a + 3 + \left(3 a + 1\right)\cdot 17 + \left(14 a + 4\right)\cdot 17^{2} + \left(16 a + 12\right)\cdot 17^{3} + \left(16 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ $r_{ 6 }$ $=$ $14 a + 16 + \left(4 a + 5\right)\cdot 17 + \left(12 a + 4\right)\cdot 17^{2} + \left(15 a + 1\right)\cdot 17^{3} + \left(5 a + 7\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

### Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

 Cycle notation $(1,6,4,3,5,2)$ $(1,4,5)$ $(2,3,6)$

### Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 6 }$ Character values $c1$ $c2$ $1$ $1$ $()$ $2$ $2$ $3$ $2$ $(1,3)(2,4)(5,6)$ $0$ $0$ $1$ $3$ $(1,4,5)(2,6,3)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$ $1$ $3$ $(1,5,4)(2,3,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$ $2$ $3$ $(1,4,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$ $2$ $3$ $(1,5,4)$ $-\zeta_{3}$ $\zeta_{3} + 1$ $2$ $3$ $(1,4,5)(2,3,6)$ $-1$ $-1$ $3$ $6$ $(1,6,4,3,5,2)$ $0$ $0$ $3$ $6$ $(1,2,5,3,4,6)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.