Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 a + 14 + \left(6 a + 2\right)\cdot 29 + \left(23 a + 5\right)\cdot 29^{2} + \left(12 a + 10\right)\cdot 29^{3} + \left(18 a + 17\right)\cdot 29^{4} + \left(8 a + 23\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 a + 5 + \left(22 a + 14\right)\cdot 29 + \left(16 a + 2\right)\cdot 29^{2} + \left(26 a + 23\right)\cdot 29^{3} + \left(10 a + 11\right)\cdot 29^{4} + \left(19 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 + 20\cdot 29 + 9\cdot 29^{2} + 13\cdot 29^{3} + 2\cdot 29^{4} + 6\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 a + 20 + \left(6 a + 5\right)\cdot 29 + \left(12 a + 6\right)\cdot 29^{2} + \left(2 a + 23\right)\cdot 29^{3} + \left(18 a + 10\right)\cdot 29^{4} + \left(9 a + 25\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 13 + \left(28 a + 16\right)\cdot 29 + \left(5 a + 22\right)\cdot 29^{2} + \left(22 a + 18\right)\cdot 29^{3} + \left(18 a + 7\right)\cdot 29^{4} + \left(a + 6\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 12 + \left(22 a + 18\right)\cdot 29 + \left(5 a + 27\right)\cdot 29^{2} + \left(16 a + 21\right)\cdot 29^{3} + \left(10 a + 9\right)\cdot 29^{4} + \left(20 a + 19\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 15 + 16\cdot 29 + 18\cdot 29^{2} + 26\cdot 29^{3} + 5\cdot 29^{4} + 13\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 6 a + 12 + 21\cdot 29 + \left(23 a + 23\right)\cdot 29^{2} + \left(6 a + 7\right)\cdot 29^{3} + \left(10 a + 21\right)\cdot 29^{4} + \left(27 a + 24\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5,4,8)(2,3,6,7)$ |
| $(1,4)(2,8)(5,6)$ |
| $(1,5,2)(4,8,6)$ |
| $(1,7,4,3)(2,5,6,8)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ | $-2$ |
| $12$ | $2$ | $(1,4)(2,8)(5,6)$ | $0$ |
| $8$ | $3$ | $(1,7,8)(3,5,4)$ | $-1$ |
| $6$ | $4$ | $(1,7,4,3)(2,5,6,8)$ | $0$ |
| $8$ | $6$ | $(1,4)(2,5,3,6,8,7)$ | $1$ |
| $6$ | $8$ | $(1,8,3,6,4,5,7,2)$ | $-\zeta_{8}^{3} - \zeta_{8}$ |
| $6$ | $8$ | $(1,5,3,2,4,8,7,6)$ | $\zeta_{8}^{3} + \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.