Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 a^{2} + 9 a + 7 + \left(9 a + 4\right)\cdot 11 + \left(7 a^{2} + 4 a + 9\right)\cdot 11^{2} + \left(5 a^{2} + 4 a + 3\right)\cdot 11^{3} + \left(10 a^{2} + 2 a + 10\right)\cdot 11^{4} + \left(4 a^{2} + 2 a + 2\right)\cdot 11^{5} + \left(a^{2} + 2 a + 9\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 a^{2} + 7 a + 9 + \left(5 a^{2} + 9 a + 10\right)\cdot 11 + \left(6 a^{2} + 5 a + 4\right)\cdot 11^{2} + \left(5 a^{2} + 6 a + 7\right)\cdot 11^{3} + \left(5 a^{2} + 9 a + 3\right)\cdot 11^{4} + \left(4 a^{2} + a + 2\right)\cdot 11^{5} + \left(10 a^{2} + 8 a + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a^{2} + 6 a + 2 + \left(a^{2} + a + 2\right)\cdot 11 + 9 a\cdot 11^{2} + \left(7 a^{2} + 4 a + 2\right)\cdot 11^{3} + \left(8 a^{2} + 3 a + 4\right)\cdot 11^{4} + \left(2 a^{2} + 8 a + 7\right)\cdot 11^{5} + \left(9 a^{2} + 3 a + 8\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a^{2} + 9 a + 5 + \left(8 a + 7\right)\cdot 11 + \left(a^{2} + 5 a + 8\right)\cdot 11^{2} + \left(7 a^{2} + 10 a + 5\right)\cdot 11^{3} + \left(3 a^{2} + a + 8\right)\cdot 11^{4} + \left(4 a^{2} + 7 a + 5\right)\cdot 11^{5} + \left(a^{2} + 10 a + 5\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 a + \left(a^{2} + 5\right)\cdot 11 + \left(5 a^{2} + 10 a + 10\right)\cdot 11^{2} + \left(8 a^{2} + 10 a + 3\right)\cdot 11^{3} + \left(a^{2} + 2 a + 2\right)\cdot 11^{4} + \left(2 a^{2} + 2 a + 10\right)\cdot 11^{5} + \left(9 a^{2} + a + 4\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 5 a^{2} + 10 a + 3 + \left(4 a^{2} + 6 a + 2\right)\cdot 11 + \left(2 a^{2} + a + 3\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 9\right)\cdot 11^{3} + \left(7 a^{2} + 8 a + 9\right)\cdot 11^{4} + \left(6 a^{2} + 6 a + 8\right)\cdot 11^{5} + \left(2 a^{2} + 6 a + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 10 a^{2} + 6 a + 6 + \left(4 a^{2} + 2 a + 6\right)\cdot 11 + \left(8 a^{2} + 7\right)\cdot 11^{2} + \left(10 a^{2} + 10\right)\cdot 11^{3} + \left(5 a^{2} + 10 a + 7\right)\cdot 11^{4} + \left(a^{2} + 6 a + 5\right)\cdot 11^{5} + \left(10 a^{2} + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 3 a^{2} + 7 a + 4 + \left(9 a^{2} + 1\right)\cdot 11 + \left(9 a^{2} + 7 a + 2\right)\cdot 11^{2} + \left(7 a^{2} + 6 a + 3\right)\cdot 11^{3} + \left(9 a^{2} + 5 a + 9\right)\cdot 11^{4} + \left(3 a^{2} + 6 a + 8\right)\cdot 11^{5} + \left(7 a + 7\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 6 a^{2} + 6 a + 8 + \left(5 a^{2} + 3 a + 3\right)\cdot 11 + \left(3 a^{2} + 10 a + 8\right)\cdot 11^{2} + \left(9 a^{2} + 4 a + 8\right)\cdot 11^{3} + \left(a^{2} + 10 a + 9\right)\cdot 11^{4} + \left(2 a^{2} + a + 2\right)\cdot 11^{5} + \left(10 a^{2} + 3 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,2,4,3,6,5)(7,9,8)$ |
| $(1,9)(4,7)(6,8)$ |
| $(2,8)(3,9)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,3)(2,6)(4,5)$ | $0$ |
| $1$ | $3$ | $(1,4,6)(2,3,5)(7,8,9)$ | $-2 \zeta_{3} - 2$ |
| $1$ | $3$ | $(1,6,4)(2,5,3)(7,9,8)$ | $2 \zeta_{3}$ |
| $2$ | $3$ | $(1,8,5)(2,4,9)(3,6,7)$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(1,5,8)(2,9,4)(3,7,6)$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,3,9)(2,8,6)(4,5,7)$ | $-1$ |
| $3$ | $6$ | $(1,2,4,3,6,5)(7,9,8)$ | $0$ |
| $3$ | $6$ | $(1,5,6,3,4,2)(7,8,9)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.