Properties

Label 2.3e2_1051.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3^{2} \cdot 1051 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9459= 3^{2} \cdot 1051 $
Artin number field: Splitting field of $f= x^{8} + 9 x^{6} + 849 x^{4} - 6912 x^{2} + 589824 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.1051.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 5 + 18\cdot 43 + 3\cdot 43^{2} + 26\cdot 43^{3} + 31\cdot 43^{4} + 13\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 43 + 7\cdot 43^{2} + 19\cdot 43^{3} + 37\cdot 43^{4} + 20\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 27\cdot 43 + 22\cdot 43^{2} + 25\cdot 43^{3} + 29\cdot 43^{4} + 14\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 + 5\cdot 43 + 31\cdot 43^{2} + 36\cdot 43^{3} + 10\cdot 43^{4} + 39\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 27 + 37\cdot 43 + 11\cdot 43^{2} + 6\cdot 43^{3} + 32\cdot 43^{4} + 3\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 30 + 15\cdot 43 + 20\cdot 43^{2} + 17\cdot 43^{3} + 13\cdot 43^{4} + 28\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 33 + 41\cdot 43 + 35\cdot 43^{2} + 23\cdot 43^{3} + 5\cdot 43^{4} + 22\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 38 + 24\cdot 43 + 39\cdot 43^{2} + 16\cdot 43^{3} + 11\cdot 43^{4} + 29\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.