Properties

Label 2.3e2_1051.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 3^{2} \cdot 1051 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$9459= 3^{2} \cdot 1051 $
Artin number field: Splitting field of $f= x^{4} - 9 x^{2} - 768 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8 + 9\cdot 43 + 19\cdot 43^{2} + 42\cdot 43^{3} + 40\cdot 43^{4} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 17 + 36\cdot 43 + 4\cdot 43^{2} + 30\cdot 43^{3} + 37\cdot 43^{4} + 25\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 26 + 6\cdot 43 + 38\cdot 43^{2} + 12\cdot 43^{3} + 5\cdot 43^{4} + 17\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 + 33\cdot 43 + 23\cdot 43^{2} + 2\cdot 43^{4} + 42\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.