Properties

Label 2.3_97e2.8t17.1c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 3 \cdot 97^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$28227= 3 \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 3 x^{6} + 6 x^{5} + 3 x^{4} + 8 x^{3} + 20 x^{2} + 8 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.3_97.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 94\cdot 103 + 95\cdot 103^{2} + 35\cdot 103^{3} + 24\cdot 103^{4} + 47\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 70\cdot 103 + 94\cdot 103^{2} + 38\cdot 103^{3} + 3\cdot 103^{4} + 2\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 10 + 76\cdot 103 + 49\cdot 103^{2} + 86\cdot 103^{3} + 39\cdot 103^{4} + 9\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 + 69\cdot 103 + 36\cdot 103^{2} + 41\cdot 103^{3} + 81\cdot 103^{4} + 47\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 50 + 62\cdot 103 + 59\cdot 103^{2} + 62\cdot 103^{3} + 62\cdot 103^{4} + 75\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 54 + 13\cdot 103 + 34\cdot 103^{2} + 54\cdot 103^{3} + 83\cdot 103^{4} + 79\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 79 + 86\cdot 103 + 18\cdot 103^{2} + 100\cdot 103^{3} + 72\cdot 103^{4} + 51\cdot 103^{5} +O\left(103^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 98 + 42\cdot 103 + 22\cdot 103^{2} + 95\cdot 103^{3} + 43\cdot 103^{4} + 98\cdot 103^{5} +O\left(103^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,6,5,4,8,2)$
$(2,6)(4,7)$
$(1,5)(2,6)(3,8)(4,7)$
$(2,7,6,4)$
$(1,8,5,3)(2,4,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,8)(4,7)$$-2$
$2$$2$$(2,6)(4,7)$$0$
$4$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$1$$4$$(1,3,5,8)(2,7,6,4)$$2 \zeta_{4}$
$1$$4$$(1,8,5,3)(2,4,6,7)$$-2 \zeta_{4}$
$2$$4$$(2,7,6,4)$$-\zeta_{4} - 1$
$2$$4$$(2,4,6,7)$$\zeta_{4} - 1$
$2$$4$$(1,5)(2,4,6,7)(3,8)$$\zeta_{4} + 1$
$2$$4$$(1,5)(2,7,6,4)(3,8)$$-\zeta_{4} + 1$
$2$$4$$(1,8,5,3)(2,7,6,4)$$0$
$4$$4$$(1,6,5,2)(3,4,8,7)$$0$
$4$$8$$(1,7,3,6,5,4,8,2)$$0$
$4$$8$$(1,6,8,7,5,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.