Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 103 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 94\cdot 103 + 95\cdot 103^{2} + 35\cdot 103^{3} + 24\cdot 103^{4} + 47\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 + 70\cdot 103 + 94\cdot 103^{2} + 38\cdot 103^{3} + 3\cdot 103^{4} + 2\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 + 76\cdot 103 + 49\cdot 103^{2} + 86\cdot 103^{3} + 39\cdot 103^{4} + 9\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 11 + 69\cdot 103 + 36\cdot 103^{2} + 41\cdot 103^{3} + 81\cdot 103^{4} + 47\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 50 + 62\cdot 103 + 59\cdot 103^{2} + 62\cdot 103^{3} + 62\cdot 103^{4} + 75\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 54 + 13\cdot 103 + 34\cdot 103^{2} + 54\cdot 103^{3} + 83\cdot 103^{4} + 79\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 79 + 86\cdot 103 + 18\cdot 103^{2} + 100\cdot 103^{3} + 72\cdot 103^{4} + 51\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 98 + 42\cdot 103 + 22\cdot 103^{2} + 95\cdot 103^{3} + 43\cdot 103^{4} + 98\cdot 103^{5} +O\left(103^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,3,6,5,4,8,2)$ |
| $(2,6)(4,7)$ |
| $(1,5)(2,6)(3,8)(4,7)$ |
| $(2,7,6,4)$ |
| $(1,8,5,3)(2,4,6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,5)(2,6)(3,8)(4,7)$ |
$-2$ |
$-2$ |
| $2$ |
$2$ |
$(2,6)(4,7)$ |
$0$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,7)(4,8)(5,6)$ |
$0$ |
$0$ |
| $1$ |
$4$ |
$(1,3,5,8)(2,7,6,4)$ |
$2 \zeta_{4}$ |
$-2 \zeta_{4}$ |
| $1$ |
$4$ |
$(1,8,5,3)(2,4,6,7)$ |
$-2 \zeta_{4}$ |
$2 \zeta_{4}$ |
| $2$ |
$4$ |
$(2,7,6,4)$ |
$\zeta_{4} + 1$ |
$-\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(2,4,6,7)$ |
$-\zeta_{4} + 1$ |
$\zeta_{4} + 1$ |
| $2$ |
$4$ |
$(1,5)(2,4,6,7)(3,8)$ |
$-\zeta_{4} - 1$ |
$\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,5)(2,7,6,4)(3,8)$ |
$\zeta_{4} - 1$ |
$-\zeta_{4} - 1$ |
| $2$ |
$4$ |
$(1,8,5,3)(2,7,6,4)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,6,5,2)(3,4,8,7)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,7,3,6,5,4,8,2)$ |
$0$ |
$0$ |
| $4$ |
$8$ |
$(1,6,8,7,5,2,3,4)$ |
$0$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.