Properties

Label 2.3_7e2_61.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 7^{2} \cdot 61 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8967= 3 \cdot 7^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} - 107 x^{5} + 37 x^{4} + 333 x^{3} + 2406 x^{2} + 1989 x + 1521 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 12\cdot 97 + 16\cdot 97^{2} + 27\cdot 97^{3} + 61\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 18\cdot 97 + 62\cdot 97^{2} + 38\cdot 97^{3} + 36\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 58\cdot 97 + 97^{2} + 27\cdot 97^{3} + 42\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 + 5\cdot 97 + 83\cdot 97^{2} + 33\cdot 97^{3} + 42\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 14\cdot 97 + 32\cdot 97^{2} + 9\cdot 97^{3} + 76\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 + 13\cdot 97 + 26\cdot 97^{2} + 46\cdot 97^{3} + 85\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 86 + 97 + 15\cdot 97^{2} + 12\cdot 97^{3} + 64\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 89 + 69\cdot 97 + 54\cdot 97^{2} + 96\cdot 97^{3} + 76\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,8)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,7)(5,8)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,8)(4,5)(6,7)$$0$
$2$$4$$(1,8,6,5)(2,3,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.